Cargando…

Developmental Maturation and Alpha-1 Adrenergic Receptors-Mediated Gene Expression Changes in Ovine Middle Cerebral Arteries

The Alpha Adrenergic Signaling Pathway is one of the chief regulators of cerebrovascular tone and cerebral blood flow (CBF), mediating its effects in the arteries through alpha1-adrenergic receptors (Alpha1AR). In the ovine middle cerebral artery (MCA), with development from a fetus to an adult, oth...

Descripción completa

Detalles Bibliográficos
Autores principales: Goyal, Dipali, Goyal, Ravi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789090/
https://www.ncbi.nlm.nih.gov/pubmed/29379105
http://dx.doi.org/10.1038/s41598-018-20210-w
Descripción
Sumario:The Alpha Adrenergic Signaling Pathway is one of the chief regulators of cerebrovascular tone and cerebral blood flow (CBF), mediating its effects in the arteries through alpha1-adrenergic receptors (Alpha1AR). In the ovine middle cerebral artery (MCA), with development from a fetus to an adult, others and we have shown that Alpha1AR play a key role in contractile responses, vascular development, remodeling, and angiogenesis. Importantly, Alpha1AR play a significant role in CBF autoregulation, which is incompletely developed in a premature fetus as compared to a near-term fetus. However, the mechanistic pathways are not completely known. Thus, we tested the hypothesis that as a function of maturation and in response to Alpha1AR stimulation there is a differential gene expression in the ovine MCA. We conducted microarray analysis on transcripts from MCAs of premature fetuses (96-day), near-term fetuses (145-day), newborn lambs, and non-pregnant adult sheep (2-year) following stimulation of Alpha1AR with phenylephrine (a specific agonist). We observed several genes which belonged to pro-inflammatory and vascular development/angiogenesis pathway significantly altered in all of the four age groups. We also observed age-specific changes in gene expression–mediated by Alpha1AR stimulation in the different developmental age groups. These findings imply complex regulatory mechanisms of cerebrovascular development.