Cargando…
A scalable approach to the computation of invariant measures for high-dimensional Markovian systems
The Markovian invariant measure is a central concept in many disciplines. Conventional numerical techniques for data-driven computation of invariant measures rely on estimation and further numerical processing of a transition matrix. Here we show how the quality of data-driven estimation of a transi...
Autores principales: | Gerber, Susanne, Olsson, Simon, Noé, Frank, Horenko, Illia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789124/ https://www.ncbi.nlm.nih.gov/pubmed/29379123 http://dx.doi.org/10.1038/s41598-018-19863-4 |
Ejemplares similares
-
Improving clustering by imposing network information
por: Gerber, Susanne, et al.
Publicado: (2015) -
Low-cost scalable discretization, prediction, and feature selection for complex systems
por: Gerber, S., et al.
Publicado: (2020) -
A deeper look into natural sciences with physics-based and data-driven measures
por: Rodrigues, Davi Röhe, et al.
Publicado: (2021) -
Record ages of non-Markovian scale-invariant random walks
por: Régnier, Léo, et al.
Publicado: (2023) -
Low-Cost Probabilistic 3D Denoising with Applications for Ultra-Low-Radiation Computed Tomography
por: Horenko, Illia, et al.
Publicado: (2022)