Cargando…
Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation
Mucosal Langerhans cells (LCs) originate from pre–dendritic cells and monocytes. However, the mechanisms involved in their in situ development remain unclear. Here, we demonstrate that the differentiation of murine mucosal LCs is a two-step process. In the lamina propria, signaling via BMP7-ALK3 pro...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789418/ https://www.ncbi.nlm.nih.gov/pubmed/29343501 http://dx.doi.org/10.1084/jem.20171508 |
Sumario: | Mucosal Langerhans cells (LCs) originate from pre–dendritic cells and monocytes. However, the mechanisms involved in their in situ development remain unclear. Here, we demonstrate that the differentiation of murine mucosal LCs is a two-step process. In the lamina propria, signaling via BMP7-ALK3 promotes translocation of LC precursors to the epithelium. Within the epithelium, TGF-β1 finalizes LC differentiation, and ALK5 is crucial to this process. Moreover, the local microbiota has a major impact on the development of mucosal LCs, whereas LCs in turn maintain mucosal homeostasis and prevent tissue destruction. These results reveal the differential and sequential role of TGF-β1 and BMP7 in LC differentiation and highlight the intimate interplay of LCs with the microbiota. |
---|