Cargando…

Cardiovascular adjustments during anticipated postural changes

It is well‐documented that feedforward cardiovascular responses occur at the onset of exercise, but it is unclear if such responses are associated with other types of movements. In this study, we tested the hypothesis that feedforward cardiovascular responses occur when a passive (imposed) 60° head‐...

Descripción completa

Detalles Bibliográficos
Autores principales: Patel, Neesirg M., Baker, Ethan A.G., Wittman, Samuel R., Engstrom, Isaiah C., Bourdages, George H., McCall, Andrew A., Miller, Derek M., Yates, Bill. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789654/
https://www.ncbi.nlm.nih.gov/pubmed/29333722
http://dx.doi.org/10.14814/phy2.13554
Descripción
Sumario:It is well‐documented that feedforward cardiovascular responses occur at the onset of exercise, but it is unclear if such responses are associated with other types of movements. In this study, we tested the hypothesis that feedforward cardiovascular responses occur when a passive (imposed) 60° head‐up tilt is anticipated, such that changes in heart rate and carotid artery blood flow (CBF) commence prior to the onset of the rotation. A light cue preceded head‐up tilts by 10 sec, and heart rate and CBF were determined for 5‐sec time periods prior to and during tilts. Even after these stimuli were provided for thousands of trials spanning several months, no systematic changes in CBF and heart rate occurred prior to tilts, and variability in cardiovascular adjustments during tilt remained substantial over time. We also hypothesized that substitution of 20° for 60° tilts in a subset of trials would result in exaggerated cardiovascular responses (as animals expected 60° tilts), which were not observed. These data suggest that cardiovascular adjustments during passive changes in posture are mainly elicited by feedback mechanisms, and that anticipation of passive head‐up tilts does not diminish the likelihood that a decrease in carotid blood flow will occur during the movements.