Cargando…

A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers

BACKGROUND: Human immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-sequencing t...

Descripción completa

Detalles Bibliográficos
Autores principales: Martin-Gayo, Enrique, Cole, Michael B., Kolb, Kellie E., Ouyang, Zhengyu, Cronin, Jacqueline, Kazer, Samuel W., Ordovas-Montanes, Jose, Lichterfeld, Mathias, Walker, Bruce D., Yosef, Nir, Shalek, Alex K., Yu, Xu G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789701/
https://www.ncbi.nlm.nih.gov/pubmed/29378643
http://dx.doi.org/10.1186/s13059-017-1385-x
_version_ 1783296337234624512
author Martin-Gayo, Enrique
Cole, Michael B.
Kolb, Kellie E.
Ouyang, Zhengyu
Cronin, Jacqueline
Kazer, Samuel W.
Ordovas-Montanes, Jose
Lichterfeld, Mathias
Walker, Bruce D.
Yosef, Nir
Shalek, Alex K.
Yu, Xu G.
author_facet Martin-Gayo, Enrique
Cole, Michael B.
Kolb, Kellie E.
Ouyang, Zhengyu
Cronin, Jacqueline
Kazer, Samuel W.
Ordovas-Montanes, Jose
Lichterfeld, Mathias
Walker, Bruce D.
Yosef, Nir
Shalek, Alex K.
Yu, Xu G.
author_sort Martin-Gayo, Enrique
collection PubMed
description BACKGROUND: Human immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-sequencing to examine viral responses among the dendritic cells (DCs) of three elite controllers (ECs) of HIV-1 infection. RESULTS: To overcome the potentially confounding effects of donor-to-donor variability, we present a generally applicable computational framework for identifying reproducible patterns in gene expression across donors who share a unifying classification. Applying it, we discover a highly functional antiviral DC state in ECs whose fractional abundance after in vitro exposure to HIV-1 correlates with higher CD4(+) T cell counts and lower HIV-1 viral loads, and that effectively primes polyfunctional T cell responses in vitro. By integrating information from existing genomic databases into our reproducibility-based analysis, we identify and validate select immunomodulators that increase the fractional abundance of this state in primary peripheral blood mononuclear cells from healthy individuals in vitro. CONCLUSIONS: Overall, our results demonstrate how single-cell approaches can reveal previously unappreciated, yet important, immune behaviors and empower rational frameworks for modulating systems-level immune responses that may prove therapeutically and prophylactically useful. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13059-017-1385-x) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5789701
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-57897012018-02-08 A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers Martin-Gayo, Enrique Cole, Michael B. Kolb, Kellie E. Ouyang, Zhengyu Cronin, Jacqueline Kazer, Samuel W. Ordovas-Montanes, Jose Lichterfeld, Mathias Walker, Bruce D. Yosef, Nir Shalek, Alex K. Yu, Xu G. Genome Biol Research BACKGROUND: Human immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-sequencing to examine viral responses among the dendritic cells (DCs) of three elite controllers (ECs) of HIV-1 infection. RESULTS: To overcome the potentially confounding effects of donor-to-donor variability, we present a generally applicable computational framework for identifying reproducible patterns in gene expression across donors who share a unifying classification. Applying it, we discover a highly functional antiviral DC state in ECs whose fractional abundance after in vitro exposure to HIV-1 correlates with higher CD4(+) T cell counts and lower HIV-1 viral loads, and that effectively primes polyfunctional T cell responses in vitro. By integrating information from existing genomic databases into our reproducibility-based analysis, we identify and validate select immunomodulators that increase the fractional abundance of this state in primary peripheral blood mononuclear cells from healthy individuals in vitro. CONCLUSIONS: Overall, our results demonstrate how single-cell approaches can reveal previously unappreciated, yet important, immune behaviors and empower rational frameworks for modulating systems-level immune responses that may prove therapeutically and prophylactically useful. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13059-017-1385-x) contains supplementary material, which is available to authorized users. BioMed Central 2018-01-29 /pmc/articles/PMC5789701/ /pubmed/29378643 http://dx.doi.org/10.1186/s13059-017-1385-x Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Martin-Gayo, Enrique
Cole, Michael B.
Kolb, Kellie E.
Ouyang, Zhengyu
Cronin, Jacqueline
Kazer, Samuel W.
Ordovas-Montanes, Jose
Lichterfeld, Mathias
Walker, Bruce D.
Yosef, Nir
Shalek, Alex K.
Yu, Xu G.
A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers
title A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers
title_full A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers
title_fullStr A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers
title_full_unstemmed A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers
title_short A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers
title_sort reproducibility-based computational framework identifies an inducible, enhanced antiviral state in dendritic cells from hiv-1 elite controllers
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789701/
https://www.ncbi.nlm.nih.gov/pubmed/29378643
http://dx.doi.org/10.1186/s13059-017-1385-x
work_keys_str_mv AT martingayoenrique areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT colemichaelb areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT kolbkelliee areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT ouyangzhengyu areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT croninjacqueline areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT kazersamuelw areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT ordovasmontanesjose areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT lichterfeldmathias areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT walkerbruced areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT yosefnir areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT shalekalexk areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT yuxug areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT martingayoenrique reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT colemichaelb reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT kolbkelliee reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT ouyangzhengyu reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT croninjacqueline reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT kazersamuelw reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT ordovasmontanesjose reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT lichterfeldmathias reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT walkerbruced reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT yosefnir reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT shalekalexk reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT yuxug reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers