Cargando…

Statins decrease leptin expression in human white adipocytes

Statin use is associated with increased calorie intake and consequent weight gain. It is speculated that statin‐dependent improvements in lipid profile may undermine the perceived need to follow lipid‐lowering and other dietary recommendations leading consequently to increased calorie intake. Howeve...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Prachi, Zhang, Yuebo, Sharma, Pragya, Covassin, Naima, Soucek, Filip, Friedman, Paul A., Somers, Virend K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789723/
https://www.ncbi.nlm.nih.gov/pubmed/29372612
http://dx.doi.org/10.14814/phy2.13566
Descripción
Sumario:Statin use is associated with increased calorie intake and consequent weight gain. It is speculated that statin‐dependent improvements in lipid profile may undermine the perceived need to follow lipid‐lowering and other dietary recommendations leading consequently to increased calorie intake. However, increases in calorie intake in statin users may also be related to statin‐dependent decreases in satiety factors such as leptin, an adipocyte‐derived adipokine. The objective of our study was to examine the direct effects of statins on leptin expression. Adipocytes are the main source of circulating leptin. Therefore, we examined the effects of atorvastatin and simvastatin on leptin expression in cultured human white adipocytes. We show that treatment of white adipocytes with simvastatin and atorvastatin decreases leptin mRNA expression (simvastatin: P = 0.008, atorvastatin: P = 0.03) and leptin secretion (simvastatin: P = 0.0001, atorvastatin: P = 0.0001). Both simvastatin and atorvastatin mediate decreases in leptin expression via extracellular‐signal‐regulated kinases 1/2 and peroxisome proliferator‐activated receptor gamma pathways (simvastatin: P = 0.01, atorvastatin: P = 0.026). Additionally, statin treatment also induced expected increases in adiponectin, while decreasing monocyte chemoattractant protein 1 (MCP1) mRNA. Furthermore, statins increased secretion of both total as well as high molecular weight adiponectin while decreasing MCP1 secretion. To conclude, statins act directly on human white adipocytes to regulate adipokine secretion and decrease leptin expression. Leptin is an important satiety factor. Hence, statin‐dependent decreases in leptin may contribute, at least in part, to increases in food intake in statin users.