Cargando…

Evaluation of cell penetrating peptide coated Mn:ZnS nanoparticles for paclitaxel delivery to cancer cells

This work aimed at formulating paclitaxel (PTX) loaded cell penetrating peptide (CPP) coated Mn doped ZnS nanoparticles (Mn:ZnS NPs) for improved anti-cancer efficacy in vitro and in vivo. The developed PTX loaded Mn:ZnS NPs with different CPPs (PEN, pVEC and R9) showed enhanced anti-cancer effect c...

Descripción completa

Detalles Bibliográficos
Autores principales: Rejinold, N. Sanoj, Han, Yunho, Yoo, Jisang, Seok, Hae Yong, Park, Ji Ho, Kim, Yeu-Chun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789852/
https://www.ncbi.nlm.nih.gov/pubmed/29382898
http://dx.doi.org/10.1038/s41598-018-20255-x
Descripción
Sumario:This work aimed at formulating paclitaxel (PTX) loaded cell penetrating peptide (CPP) coated Mn doped ZnS nanoparticles (Mn:ZnS NPs) for improved anti-cancer efficacy in vitro and in vivo. The developed PTX loaded Mn:ZnS NPs with different CPPs (PEN, pVEC and R9) showed enhanced anti-cancer effect compared to bare PTX, which has been validated by MTT assay followed by apoptosis assay and DNA fragmentation analysis. The in vivo bio-distribution and anti-cancer efficacy was studied on breast cancer xenograft model showing maximum tumor localization and enhanced therapeutic efficacy with R9 coated Mn:ZnS NPs (R9:Mn:ZnS NPs) and was confirmed by H/E staining. Thus, R9:Mn:ZnS NPs could be an ideal theranostic nano-carrier for PTX with enhanced  the rapeutic efficacy toward cancer cells, where penetration and sustainability of therapeutics are essential.