Cargando…
Error-Gated Hebbian Rule: A Local Learning Rule for Principal and Independent Component Analysis
We developed a biologically plausible unsupervised learning algorithm, error-gated Hebbian rule (EGHR)-β, that performs principal component analysis (PCA) and independent component analysis (ICA) in a single-layer feedforward neural network. If parameter β = 1, it can extract the subspace that major...
Autores principales: | Isomura, Takuya, Toyoizumi, Taro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789861/ https://www.ncbi.nlm.nih.gov/pubmed/29382868 http://dx.doi.org/10.1038/s41598-018-20082-0 |
Ejemplares similares
-
Multi-context blind source separation by error-gated Hebbian rule
por: Isomura, Takuya, et al.
Publicado: (2019) -
A Local Learning Rule for Independent Component Analysis
por: Isomura, Takuya, et al.
Publicado: (2016) -
Mapping Hebbian Learning Rules to Coupling Resistances for Oscillatory Neural Networks
por: Delacour, Corentin, et al.
Publicado: (2021) -
Mathematical properties of neuronal TD-rules and differential Hebbian learning: a comparison
por: Kolodziejski, Christoph, et al.
Publicado: (2008) -
Comparison of Pattern Discrimination Mechanisms of Hebbian and Spatiotemporal Learning Rules in Self-Organization
por: Tsukada, Hiromichi, et al.
Publicado: (2021)