Cargando…

A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure

Automated tape-collecting ultramicrotomy in conjunction with scanning electron microscopy (SEM) is a powerful approach for volume electron microscopy and three-dimensional neuronal circuit analysis. Current tapes are limited by section wrinkle formation, surface scratches and sample charging during...

Descripción completa

Detalles Bibliográficos
Autores principales: Kubota, Yoshiyuki, Sohn, Jaerin, Hatada, Sayuri, Schurr, Meike, Straehle, Jakob, Gour, Anjali, Neujahr, Ralph, Miki, Takafumi, Mikula, Shawn, Kawaguchi, Yasuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789869/
https://www.ncbi.nlm.nih.gov/pubmed/29382816
http://dx.doi.org/10.1038/s41467-017-02768-7
_version_ 1783296366696464384
author Kubota, Yoshiyuki
Sohn, Jaerin
Hatada, Sayuri
Schurr, Meike
Straehle, Jakob
Gour, Anjali
Neujahr, Ralph
Miki, Takafumi
Mikula, Shawn
Kawaguchi, Yasuo
author_facet Kubota, Yoshiyuki
Sohn, Jaerin
Hatada, Sayuri
Schurr, Meike
Straehle, Jakob
Gour, Anjali
Neujahr, Ralph
Miki, Takafumi
Mikula, Shawn
Kawaguchi, Yasuo
author_sort Kubota, Yoshiyuki
collection PubMed
description Automated tape-collecting ultramicrotomy in conjunction with scanning electron microscopy (SEM) is a powerful approach for volume electron microscopy and three-dimensional neuronal circuit analysis. Current tapes are limited by section wrinkle formation, surface scratches and sample charging during imaging. Here we show that a plasma-hydrophilized carbon nanotube (CNT)-coated polyethylene terephthalate (PET) tape effectively resolves these issues and produces SEM images of comparable quality to those from transmission electron microscopy. CNT tape can withstand multiple rounds of imaging, offer low surface resistance across the entire tape length and generate no wrinkles during the collection of ultrathin sections. When combined with an enhanced en bloc staining protocol, CNT tape-processed brain sections reveal detailed synaptic ultrastructure. In addition, CNT tape is compatible with post-embedding immunostaining for light and electron microscopy. We conclude that CNT tape can enable high-resolution volume electron microscopy for brain ultrastructure analysis.
format Online
Article
Text
id pubmed-5789869
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-57898692018-01-31 A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure Kubota, Yoshiyuki Sohn, Jaerin Hatada, Sayuri Schurr, Meike Straehle, Jakob Gour, Anjali Neujahr, Ralph Miki, Takafumi Mikula, Shawn Kawaguchi, Yasuo Nat Commun Article Automated tape-collecting ultramicrotomy in conjunction with scanning electron microscopy (SEM) is a powerful approach for volume electron microscopy and three-dimensional neuronal circuit analysis. Current tapes are limited by section wrinkle formation, surface scratches and sample charging during imaging. Here we show that a plasma-hydrophilized carbon nanotube (CNT)-coated polyethylene terephthalate (PET) tape effectively resolves these issues and produces SEM images of comparable quality to those from transmission electron microscopy. CNT tape can withstand multiple rounds of imaging, offer low surface resistance across the entire tape length and generate no wrinkles during the collection of ultrathin sections. When combined with an enhanced en bloc staining protocol, CNT tape-processed brain sections reveal detailed synaptic ultrastructure. In addition, CNT tape is compatible with post-embedding immunostaining for light and electron microscopy. We conclude that CNT tape can enable high-resolution volume electron microscopy for brain ultrastructure analysis. Nature Publishing Group UK 2018-01-30 /pmc/articles/PMC5789869/ /pubmed/29382816 http://dx.doi.org/10.1038/s41467-017-02768-7 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Kubota, Yoshiyuki
Sohn, Jaerin
Hatada, Sayuri
Schurr, Meike
Straehle, Jakob
Gour, Anjali
Neujahr, Ralph
Miki, Takafumi
Mikula, Shawn
Kawaguchi, Yasuo
A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure
title A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure
title_full A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure
title_fullStr A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure
title_full_unstemmed A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure
title_short A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure
title_sort carbon nanotube tape for serial-section electron microscopy of brain ultrastructure
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789869/
https://www.ncbi.nlm.nih.gov/pubmed/29382816
http://dx.doi.org/10.1038/s41467-017-02768-7
work_keys_str_mv AT kubotayoshiyuki acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT sohnjaerin acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT hatadasayuri acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT schurrmeike acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT straehlejakob acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT gouranjali acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT neujahrralph acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT mikitakafumi acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT mikulashawn acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT kawaguchiyasuo acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT kubotayoshiyuki carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT sohnjaerin carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT hatadasayuri carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT schurrmeike carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT straehlejakob carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT gouranjali carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT neujahrralph carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT mikitakafumi carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT mikulashawn carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure
AT kawaguchiyasuo carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure