Cargando…
A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure
Automated tape-collecting ultramicrotomy in conjunction with scanning electron microscopy (SEM) is a powerful approach for volume electron microscopy and three-dimensional neuronal circuit analysis. Current tapes are limited by section wrinkle formation, surface scratches and sample charging during...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789869/ https://www.ncbi.nlm.nih.gov/pubmed/29382816 http://dx.doi.org/10.1038/s41467-017-02768-7 |
_version_ | 1783296366696464384 |
---|---|
author | Kubota, Yoshiyuki Sohn, Jaerin Hatada, Sayuri Schurr, Meike Straehle, Jakob Gour, Anjali Neujahr, Ralph Miki, Takafumi Mikula, Shawn Kawaguchi, Yasuo |
author_facet | Kubota, Yoshiyuki Sohn, Jaerin Hatada, Sayuri Schurr, Meike Straehle, Jakob Gour, Anjali Neujahr, Ralph Miki, Takafumi Mikula, Shawn Kawaguchi, Yasuo |
author_sort | Kubota, Yoshiyuki |
collection | PubMed |
description | Automated tape-collecting ultramicrotomy in conjunction with scanning electron microscopy (SEM) is a powerful approach for volume electron microscopy and three-dimensional neuronal circuit analysis. Current tapes are limited by section wrinkle formation, surface scratches and sample charging during imaging. Here we show that a plasma-hydrophilized carbon nanotube (CNT)-coated polyethylene terephthalate (PET) tape effectively resolves these issues and produces SEM images of comparable quality to those from transmission electron microscopy. CNT tape can withstand multiple rounds of imaging, offer low surface resistance across the entire tape length and generate no wrinkles during the collection of ultrathin sections. When combined with an enhanced en bloc staining protocol, CNT tape-processed brain sections reveal detailed synaptic ultrastructure. In addition, CNT tape is compatible with post-embedding immunostaining for light and electron microscopy. We conclude that CNT tape can enable high-resolution volume electron microscopy for brain ultrastructure analysis. |
format | Online Article Text |
id | pubmed-5789869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-57898692018-01-31 A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure Kubota, Yoshiyuki Sohn, Jaerin Hatada, Sayuri Schurr, Meike Straehle, Jakob Gour, Anjali Neujahr, Ralph Miki, Takafumi Mikula, Shawn Kawaguchi, Yasuo Nat Commun Article Automated tape-collecting ultramicrotomy in conjunction with scanning electron microscopy (SEM) is a powerful approach for volume electron microscopy and three-dimensional neuronal circuit analysis. Current tapes are limited by section wrinkle formation, surface scratches and sample charging during imaging. Here we show that a plasma-hydrophilized carbon nanotube (CNT)-coated polyethylene terephthalate (PET) tape effectively resolves these issues and produces SEM images of comparable quality to those from transmission electron microscopy. CNT tape can withstand multiple rounds of imaging, offer low surface resistance across the entire tape length and generate no wrinkles during the collection of ultrathin sections. When combined with an enhanced en bloc staining protocol, CNT tape-processed brain sections reveal detailed synaptic ultrastructure. In addition, CNT tape is compatible with post-embedding immunostaining for light and electron microscopy. We conclude that CNT tape can enable high-resolution volume electron microscopy for brain ultrastructure analysis. Nature Publishing Group UK 2018-01-30 /pmc/articles/PMC5789869/ /pubmed/29382816 http://dx.doi.org/10.1038/s41467-017-02768-7 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Kubota, Yoshiyuki Sohn, Jaerin Hatada, Sayuri Schurr, Meike Straehle, Jakob Gour, Anjali Neujahr, Ralph Miki, Takafumi Mikula, Shawn Kawaguchi, Yasuo A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure |
title | A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure |
title_full | A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure |
title_fullStr | A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure |
title_full_unstemmed | A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure |
title_short | A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure |
title_sort | carbon nanotube tape for serial-section electron microscopy of brain ultrastructure |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789869/ https://www.ncbi.nlm.nih.gov/pubmed/29382816 http://dx.doi.org/10.1038/s41467-017-02768-7 |
work_keys_str_mv | AT kubotayoshiyuki acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT sohnjaerin acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT hatadasayuri acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT schurrmeike acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT straehlejakob acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT gouranjali acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT neujahrralph acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT mikitakafumi acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT mikulashawn acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT kawaguchiyasuo acarbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT kubotayoshiyuki carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT sohnjaerin carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT hatadasayuri carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT schurrmeike carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT straehlejakob carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT gouranjali carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT neujahrralph carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT mikitakafumi carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT mikulashawn carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure AT kawaguchiyasuo carbonnanotubetapeforserialsectionelectronmicroscopyofbrainultrastructure |