Cargando…
Melanopsin- and L-cone–induced pupil constriction is inhibited by S- and M-cones in humans
The human retina contains five photoreceptor types: rods; short (S)-, mid (M)-, and long (L)-wavelength–sensitive cones; and melanopsin-expressing ganglion cells. Recently, it has been shown that selective increments in M-cone activation are paradoxically perceived as brightness decrements, as oppos...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789936/ https://www.ncbi.nlm.nih.gov/pubmed/29311335 http://dx.doi.org/10.1073/pnas.1716281115 |
Sumario: | The human retina contains five photoreceptor types: rods; short (S)-, mid (M)-, and long (L)-wavelength–sensitive cones; and melanopsin-expressing ganglion cells. Recently, it has been shown that selective increments in M-cone activation are paradoxically perceived as brightness decrements, as opposed to L-cone increments. Here we show that similar effects are also observed in the pupillary light response, whereby M-cone or S-cone increments lead to pupil dilation whereas L-cone or melanopic illuminance increments resulted in pupil constriction. Additionally, intermittent photoreceptor activation increased pupil constriction over a 30-min interval. Modulation of L-cone or melanopic illuminance within the 0.25–4-Hz frequency range resulted in more sustained pupillary constriction than light of constant intensity. Opposite results were found for S-cone and M-cone modulations (2 Hz), mirroring the dichotomy observed in the transient responses. The transient and sustained pupillary light responses therefore suggest that S- and M-cones provide inhibitory input to the pupillary control system when selectively activated, whereas L-cones and melanopsin response fulfill an excitatory role. These findings provide insight into functional networks in the human retina and the effect of color-coding in nonvisual responses to light, and imply that nonvisual and visual brightness discrimination may share a common pathway that starts in the retina. |
---|