Cargando…
Formation of Multi-Component Extracellular Matrix Protein Fibers
The extracellular matrix (ECM) consists of polymerized protein monomers that form a unique fibrous network providing stability and structural support to surrounding cells. We harnessed the fibrillogenesis mechanisms of naturally occurring ECM proteins to produce artificial fibers with a heterogeneou...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790006/ https://www.ncbi.nlm.nih.gov/pubmed/29382927 http://dx.doi.org/10.1038/s41598-018-20371-8 |
Sumario: | The extracellular matrix (ECM) consists of polymerized protein monomers that form a unique fibrous network providing stability and structural support to surrounding cells. We harnessed the fibrillogenesis mechanisms of naturally occurring ECM proteins to produce artificial fibers with a heterogeneous protein makeup. Using ECM proteins as fibril building blocks, we created uniquely structured multi-component ECM fibers. Sequential incubation of fibronectin (FN) and laminin (LAM) resulted in self-assembly into locally stacked fibers. In contrast, simultaneous incubation of FN with LAM or collagen (COL) produced molecularly stacked multi-component fibers because both proteins share a similar assembly mechanism or possess binding domains specific to each other. Sequential incubation of COL on FN fibers resulted in fibers with sandwiched layers because COL molecules bind to the external surface of FN fibers. By choosing proteins for incubation according to the interplay of their fibrillogenesis mechanisms and their binding domains (exposed when they unfold), we were able to create ECM protein fibers that have never before been observed. |
---|