Cargando…
Diagnostic accuracy of semiautomatic lesion detection plus quantitative susceptibility mapping in the identification of new and enhancing multiple sclerosis lesions
PURPOSE: To evaluate the diagnostic accuracy of a novel non-contrast brain MRI method based on semiautomatic lesion detection using T2w FLAIR subtraction image, the statistical detection of change (SDC) algorithm (T2w + SDC), and quantitative susceptibility mapping (QSM). This method identifies new...
Autores principales: | Zhang, Shun, Nguyen, Thanh D., Zhao, Yize, Gauthier, Susan A., Wang, Yi, Gupta, Ajay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790036/ https://www.ncbi.nlm.nih.gov/pubmed/29387531 http://dx.doi.org/10.1016/j.nicl.2018.01.013 |
Ejemplares similares
-
QSMRim-Net: Imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps
por: Zhang, Hang, et al.
Publicado: (2022) -
Disease correlates of rim lesions on quantitative susceptibility mapping in multiple sclerosis
por: Marcille, Melanie, et al.
Publicado: (2022) -
ALL-Net: Anatomical information lesion-wise loss function integrated into neural network for multiple sclerosis lesion segmentation
por: Zhang, Hang, et al.
Publicado: (2021) -
Measuring longitudinal myelin water fraction in new multiple sclerosis lesions
por: Vargas, Wendy S., et al.
Publicado: (2015) -
Quantitative T1 mapping detects blood–brain barrier breakdown in apparently non-enhancing multiple sclerosis lesions
por: Donatelli, Graziella, et al.
Publicado: (2023)