Cargando…

Identification of QTLs for rice brown spot resistance in backcross inbred lines derived from a cross between Koshihikari and CH45

Rice brown spot (BS), caused by Bipolaris oryzae, is one of the major diseases of rice in Japan. Quantitative resistance has been observed in local cultivars (e.g., CH45), but no economically useful resistant variety has been bred. Using simple sequence repeat (SSR) polymorphic markers, we conducted...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsumoto, Kengo, Ota, Yuya, Seta, Satomi, Nakayama, Yukinori, Ohno, Teppei, Mizobuchi, Ritsuko, Sato, Hiroyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society of Breeding 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790048/
https://www.ncbi.nlm.nih.gov/pubmed/29398949
http://dx.doi.org/10.1270/jsbbs.17057
Descripción
Sumario:Rice brown spot (BS), caused by Bipolaris oryzae, is one of the major diseases of rice in Japan. Quantitative resistance has been observed in local cultivars (e.g., CH45), but no economically useful resistant variety has been bred. Using simple sequence repeat (SSR) polymorphic markers, we conducted quantitative trait locus (QTL) analysis of BS resistance in backcross inbred lines (BILs) from a cross between indica CH45 (resistant) and japonica Koshihikari (susceptible). On the basis of field disease evaluations in 2015 and 2016, four QTLs contributing to BS resistance were identified on chromosomes 2 (qBSR2-kc), 7 (qBSR7-kc), 9 (qBSR9-kc), and 11 (qBSR11-kc). The ‘CH45’ alleles at qBSR2-kc, qBSR7-kc, and qBSR11-kc and the ‘Koshihikari’ allele at qBSR9-kc increased resistance. The major QTL qBSR11-kc explained 23.0%–25.9% of the total phenotypic variation. Two QTLs (qBSR9-kc and qBSR11-kc) were detected in both years, whereas the other two were detected only in 2016. Genetic markers flanking these four QTLs will be powerful tools for marker-assisted selection to improve BS resistance.