Cargando…
The ratio between cerebral blood flow and Tmax predicts the quality of collaterals in acute ischemic stroke
BACKGROUND: In acute ischemic stroke the status of collateral circulation is a critical factor in determining outcome. We propose a less invasive alternative to digital subtraction angiography for evaluating collaterals based on dynamic-susceptibility contrast magnetic resonance imaging. METHODS: Pe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790218/ https://www.ncbi.nlm.nih.gov/pubmed/29381701 http://dx.doi.org/10.1371/journal.pone.0190811 |
Sumario: | BACKGROUND: In acute ischemic stroke the status of collateral circulation is a critical factor in determining outcome. We propose a less invasive alternative to digital subtraction angiography for evaluating collaterals based on dynamic-susceptibility contrast magnetic resonance imaging. METHODS: Perfusion maps of Tmax and cerebral blood flow (CBF) were created for 35 patients with baseline occlusion of a major cerebral artery. Volumes of hypoperfusion were defined as having a Tmax delay of > 4 seconds (Tmax4s) and > 6 seconds (Tmax6s) and a CBF drop below 80% of healthy, contralateral tissue. For each patient a ratio between the volume of the CBF and the Tmax based perfusion deficit was calculated. Associations with collateral status and radiological outcome were assessed with the Mann-Whitney-U test, uni- and multivariable logistic regression analyses as well as area under the receiver-operator-characteristic (ROC) curve. RESULTS: The CBF/Tmax volume ratios were significantly associated with bad collateral status in crude logistic regression analysis as well as with adjustment for NIHSS at admission and baseline infarct volume (OR = 2.5 95% CI[1.2–5.4] p = 0.020 for CBF/Tmax 4s volume ratio and OR = 1.6 95% CI[1.0–2.6] p = 0.031 for CBF/Tmax6s volume ratio). Moreover, the ratios were significantly correlated to final infarct size (Spearman’s rho = 0.711 and 0.619, respectively for the CBF/Tmax4s volume ratio and CBF/Tmax6s volume ration, all p<0.001). The ratios also had a high area under the ROC curve of 0.93 95%CI[0.86–1.00]) and 0.90 95%CI[0.80–1.00]respectively for predicting poor radiological outcome. CONCLUSIONS: In the setting of acute ischemic stroke the CBF/Tmax volume ratio can be used to differentiate between good and insufficient collateral circulation without the need for invasive procedures like conventional angiography. |
---|