Cargando…
An M-estimator for reduced-rank system identification
High-dimensional time-series data from a wide variety of domains, such as neuroscience, are being generated every day. Fitting statistical models to such data, to enable parameter estimation and time-series prediction, is an important computational primitive. Existing methods, however, are unable to...
Autores principales: | Chen, Shaojie, Liu, Kai, Yang, Yuguang, Xu, Yuting, Lee, Seonjoo, Lindquist, Martin, Caffo, Brian S., Vogelstein, Joshua T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790321/ https://www.ncbi.nlm.nih.gov/pubmed/29391659 http://dx.doi.org/10.1016/j.patrec.2016.12.012 |
Ejemplares similares
-
Parameter expansion for estimation of reduced rank covariance matrices (Open Access publication)
por: Meyer, Karin
Publicado: (2008) -
Linear stochastic systems: a geometric approach to modeling, estimation and identification
por: Lindquist, Anders, et al.
Publicado: (2015) -
Rank-invariant estimation of inbreeding coefficients
por: Zhang, Qian S., et al.
Publicado: (2021) -
BiRank: Fast and Flexible Ranking on Bipartite Networks with R and Python
por: Yang, Kai-Cheng, et al.
Publicado: (2020) -
A Parcellation Based Nonparametric Algorithm for Independent Component Analysis with Application to fMRI Data
por: Li, Shanshan, et al.
Publicado: (2016)