Cargando…
FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest
Early vertebrate embryos possess cells with the potential to generate all embryonic cell types. While this pluripotency is progressively lost as cells become lineage restricted, Neural Crest cells retain broad developmental potential. Here, we provide novel insights into signals essential for both p...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790379/ https://www.ncbi.nlm.nih.gov/pubmed/29350613 http://dx.doi.org/10.7554/eLife.33845 |
_version_ | 1783296438035283968 |
---|---|
author | Geary, Lauren LaBonne, Carole |
author_facet | Geary, Lauren LaBonne, Carole |
author_sort | Geary, Lauren |
collection | PubMed |
description | Early vertebrate embryos possess cells with the potential to generate all embryonic cell types. While this pluripotency is progressively lost as cells become lineage restricted, Neural Crest cells retain broad developmental potential. Here, we provide novel insights into signals essential for both pluripotency and neural crest formation in Xenopus. We show that FGF signaling controls a subset of genes expressed by pluripotent blastula cells, and find a striking switch in the signaling cascades activated by FGF signaling as cells lose pluripotency and commence lineage restriction. Pluripotent cells display and require Map Kinase signaling, whereas PI3 Kinase/Akt signals increase as developmental potential is restricted, and are required for transit to certain lineage restricted states. Importantly, retaining a high Map Kinase/low Akt signaling profile is essential for establishing Neural Crest stem cells. These findings shed important light on the signal-mediated control of pluripotency and the molecular mechanisms governing genesis of Neural Crest. |
format | Online Article Text |
id | pubmed-5790379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-57903792018-01-31 FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest Geary, Lauren LaBonne, Carole eLife Developmental Biology and Stem Cells Early vertebrate embryos possess cells with the potential to generate all embryonic cell types. While this pluripotency is progressively lost as cells become lineage restricted, Neural Crest cells retain broad developmental potential. Here, we provide novel insights into signals essential for both pluripotency and neural crest formation in Xenopus. We show that FGF signaling controls a subset of genes expressed by pluripotent blastula cells, and find a striking switch in the signaling cascades activated by FGF signaling as cells lose pluripotency and commence lineage restriction. Pluripotent cells display and require Map Kinase signaling, whereas PI3 Kinase/Akt signals increase as developmental potential is restricted, and are required for transit to certain lineage restricted states. Importantly, retaining a high Map Kinase/low Akt signaling profile is essential for establishing Neural Crest stem cells. These findings shed important light on the signal-mediated control of pluripotency and the molecular mechanisms governing genesis of Neural Crest. eLife Sciences Publications, Ltd 2018-01-19 /pmc/articles/PMC5790379/ /pubmed/29350613 http://dx.doi.org/10.7554/eLife.33845 Text en © 2018, Geary et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Developmental Biology and Stem Cells Geary, Lauren LaBonne, Carole FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest |
title | FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest |
title_full | FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest |
title_fullStr | FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest |
title_full_unstemmed | FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest |
title_short | FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest |
title_sort | fgf mediated mapk and pi3k/akt signals make distinct contributions to pluripotency and the establishment of neural crest |
topic | Developmental Biology and Stem Cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790379/ https://www.ncbi.nlm.nih.gov/pubmed/29350613 http://dx.doi.org/10.7554/eLife.33845 |
work_keys_str_mv | AT gearylauren fgfmediatedmapkandpi3kaktsignalsmakedistinctcontributionstopluripotencyandtheestablishmentofneuralcrest AT labonnecarole fgfmediatedmapkandpi3kaktsignalsmakedistinctcontributionstopluripotencyandtheestablishmentofneuralcrest |