Cargando…

PM2.5 inhalation induces intracranial atherosclerosis which may be ameliorated by omega 3 fatty acids

BACKGROUND: Intracranial atherosclerosis (ICA) a major health problem. This study investigated whether inhalation of fine airborne particulate matters (PM2.5) causes ICA and whether omega-3 fatty acids (O3FA) attenuated the development of ICA. RESULTS: Twelve but not 6 week exposure significantly in...

Descripción completa

Detalles Bibliográficos
Autores principales: Guan, Longfei, Geng, Xiaokun, Shen, Jiamei, Yip, James, Li, Fengwu, Du, Huishan, Ji, Zhili, Ding, Yuchuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790498/
https://www.ncbi.nlm.nih.gov/pubmed/29423081
http://dx.doi.org/10.18632/oncotarget.23347
Descripción
Sumario:BACKGROUND: Intracranial atherosclerosis (ICA) a major health problem. This study investigated whether inhalation of fine airborne particulate matters (PM2.5) causes ICA and whether omega-3 fatty acids (O3FA) attenuated the development of ICA. RESULTS: Twelve but not 6 week exposure significantly increased triglycerides (TG) in normal chow diet (NCD), while PM2.5 enhanced all lipid profiles (TG, low density lipoprotein (LDL) and cholesterol (CHO)) after both 6 and 12-week exposure with high-cholesterol diet (HCD). PM2.5 exposure for 12 but not 6 weeks significantly induced middle cerebral artery (MCA) narrowing and thickening, in association with the enhanced expression of inflammatory cytokines, (interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interferon gamma (IFN-γ)), vascular cell adhesion molecule 1 (VCAM-1) and inducible nitric oxide synthase (iNOS). O3FA significantly attenuated vascular alterations, even without favorable changes in lipid profiles, in association with reduced expression of IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS in brain vessels. CONCLUSIONS: PM2.5 exposure for 12 weeks aggravates ICA in a dietary model (HCD + short-term L-NAME), which may be mediated by vascular inflammation. O3FA dietary supplementation prevents ICA development and inflammatory reaction in cerebral vessels. METHODS: Adult Sprague-Dawly rats were under filtered air (FA) or PM2.5 exposure with NCD or HCD for 6 or 12 weeks. Half of the HCD rats were treated with O3FA (5 mg/kg/day) by gavage. A total of 600 mg NG-nitro-L-arginine methyl ester (L-NAME, 3 mg/mL) per rat was administered over two weeks as supplementation in the HCD group. Blood lipids, including LDL, CHO, TG and high density lipoprotein (HDL), were measured at 6 and 12 weeks. ICA was determined by lumen diameter and thickness of the MCA. Inflammatory markers, IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS were assessed by real-time PCR for mRNA and Western blot for protein expression.