Cargando…

Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model

BACKGROUND: Traumatic brain injury (TBI) is a critical public health and socio-economic problem worldwide. A growing body of evidence supports the involvement of inflammatory events in TBI. It has been reported that resident microglia and infiltrating monocytes promote an inflammatory reaction that...

Descripción completa

Detalles Bibliográficos
Autores principales: Katsumoto, Atsuko, Miranda, Aline S., Butovsky, Oleg, Teixeira, Antônio L., Ransohoff, Richard M., Lamb, Bruce T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5791334/
https://www.ncbi.nlm.nih.gov/pubmed/29382353
http://dx.doi.org/10.1186/s12974-018-1075-y
_version_ 1783296613083512832
author Katsumoto, Atsuko
Miranda, Aline S.
Butovsky, Oleg
Teixeira, Antônio L.
Ransohoff, Richard M.
Lamb, Bruce T.
author_facet Katsumoto, Atsuko
Miranda, Aline S.
Butovsky, Oleg
Teixeira, Antônio L.
Ransohoff, Richard M.
Lamb, Bruce T.
author_sort Katsumoto, Atsuko
collection PubMed
description BACKGROUND: Traumatic brain injury (TBI) is a critical public health and socio-economic problem worldwide. A growing body of evidence supports the involvement of inflammatory events in TBI. It has been reported that resident microglia and infiltrating monocytes promote an inflammatory reaction that leads to neuronal death and eventually behavioral and cognitive impairment. Currently, there is no effective treatment for TBI and the development of new therapeutic strategies is a scientific goal of highest priority. Laquinimod, an orally administered neuroimmunomodulator initially developed for the treatment of multiple sclerosis, might be a promising neuroprotective therapy for TBI. Herein, we aim to investigate the hypothesis that laquinimod will reduce the central nervous system (CNS) damage caused by TBI. METHODS: To test our hypothesis, Ccr2(rfp/+) Cx3cr1(gfp/+) mice were submitted to a moderate TBI induced by fluid percussion. Sham controls were submitted only to craniotomy. Mice were treated daily by oral gavage with laquinimod (25 mg/kg) 7 days before and 3 days after TBI. The brains of mice treated or not treated with laquinimod were collected at 3 and 120 days post injury, and brain morphological changes, axonal injury, and neurogenesis were evaluated by microscopy analysis. We also isolated microglia from infiltrating monocytes, and the expression of immune gene mRNAs were analyzed by employing a quantitative NanoString nCounter technique. RESULTS: Laquinimod prevented ventricle enlargement caused by TBI in the long term. Immunohistochemical analyses revealed decreased axonal damage and restored neurogenesis in the laquinimod-treated TBI group at early stage (3 days post injury). Notably, laquinimod inhibited the monocytes infiltration to the brain. Hierarchial clustering demonstrated that the microglial gene expression from the TBI group treated with laquinimod resembles the sham group more than the TBI-water control group. CONCLUSIONS: Administration of laquinimod reduced lesion volume and axonal damage and restored neurogenesis after TBI. Laquinimod might be a potential therapy strategy to improve TBI long-term prognosis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12974-018-1075-y) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5791334
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-57913342018-02-08 Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model Katsumoto, Atsuko Miranda, Aline S. Butovsky, Oleg Teixeira, Antônio L. Ransohoff, Richard M. Lamb, Bruce T. J Neuroinflammation Research BACKGROUND: Traumatic brain injury (TBI) is a critical public health and socio-economic problem worldwide. A growing body of evidence supports the involvement of inflammatory events in TBI. It has been reported that resident microglia and infiltrating monocytes promote an inflammatory reaction that leads to neuronal death and eventually behavioral and cognitive impairment. Currently, there is no effective treatment for TBI and the development of new therapeutic strategies is a scientific goal of highest priority. Laquinimod, an orally administered neuroimmunomodulator initially developed for the treatment of multiple sclerosis, might be a promising neuroprotective therapy for TBI. Herein, we aim to investigate the hypothesis that laquinimod will reduce the central nervous system (CNS) damage caused by TBI. METHODS: To test our hypothesis, Ccr2(rfp/+) Cx3cr1(gfp/+) mice were submitted to a moderate TBI induced by fluid percussion. Sham controls were submitted only to craniotomy. Mice were treated daily by oral gavage with laquinimod (25 mg/kg) 7 days before and 3 days after TBI. The brains of mice treated or not treated with laquinimod were collected at 3 and 120 days post injury, and brain morphological changes, axonal injury, and neurogenesis were evaluated by microscopy analysis. We also isolated microglia from infiltrating monocytes, and the expression of immune gene mRNAs were analyzed by employing a quantitative NanoString nCounter technique. RESULTS: Laquinimod prevented ventricle enlargement caused by TBI in the long term. Immunohistochemical analyses revealed decreased axonal damage and restored neurogenesis in the laquinimod-treated TBI group at early stage (3 days post injury). Notably, laquinimod inhibited the monocytes infiltration to the brain. Hierarchial clustering demonstrated that the microglial gene expression from the TBI group treated with laquinimod resembles the sham group more than the TBI-water control group. CONCLUSIONS: Administration of laquinimod reduced lesion volume and axonal damage and restored neurogenesis after TBI. Laquinimod might be a potential therapy strategy to improve TBI long-term prognosis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12974-018-1075-y) contains supplementary material, which is available to authorized users. BioMed Central 2018-01-30 /pmc/articles/PMC5791334/ /pubmed/29382353 http://dx.doi.org/10.1186/s12974-018-1075-y Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Katsumoto, Atsuko
Miranda, Aline S.
Butovsky, Oleg
Teixeira, Antônio L.
Ransohoff, Richard M.
Lamb, Bruce T.
Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model
title Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model
title_full Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model
title_fullStr Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model
title_full_unstemmed Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model
title_short Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model
title_sort laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5791334/
https://www.ncbi.nlm.nih.gov/pubmed/29382353
http://dx.doi.org/10.1186/s12974-018-1075-y
work_keys_str_mv AT katsumotoatsuko laquinimodattenuatesinflammationbymodulatingmacrophagefunctionsintraumaticbraininjurymousemodel
AT mirandaalines laquinimodattenuatesinflammationbymodulatingmacrophagefunctionsintraumaticbraininjurymousemodel
AT butovskyoleg laquinimodattenuatesinflammationbymodulatingmacrophagefunctionsintraumaticbraininjurymousemodel
AT teixeiraantoniol laquinimodattenuatesinflammationbymodulatingmacrophagefunctionsintraumaticbraininjurymousemodel
AT ransohoffrichardm laquinimodattenuatesinflammationbymodulatingmacrophagefunctionsintraumaticbraininjurymousemodel
AT lambbrucet laquinimodattenuatesinflammationbymodulatingmacrophagefunctionsintraumaticbraininjurymousemodel