Cargando…
Exploiting graph kernels for high performance biomedical relation extraction
BACKGROUND: Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs...
Autores principales: | Panyam, Nagesh C., Verspoor, Karin, Cohn, Trevor, Ramamohanarao, Kotagiri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5791373/ https://www.ncbi.nlm.nih.gov/pubmed/29382397 http://dx.doi.org/10.1186/s13326-017-0168-3 |
Ejemplares similares
-
BioCreative VI Precision Medicine Track system performance is constrained by entity recognition and variations in corpus characteristics
por: Chen, Qingyu, et al.
Publicado: (2018) -
Optimizing graph-based patterns to extract biomedical events from the literature
por: Liu, Haibin, et al.
Publicado: (2015) -
A new approach to enhance the performance of decision tree for classifying gene expression data
por: Hassan, Md Rafiul, et al.
Publicado: (2013) -
Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature
por: Zhang, Yaoyun, et al.
Publicado: (2016) -
Exploiting document graphs for inter sentence relation extraction
por: Le, Hoang-Quynh, et al.
Publicado: (2022)