Cargando…
Large scale analysis of protein conformational transitions from aqueous to non-aqueous media
BACKGROUND: Biocatalysis in organic solvents is nowadays a common practice with a large potential in Biotechnology. Several studies report that proteins which are co-crystallized or soaked in organic solvents preserve their fold integrity showing almost identical arrangements when compared to their...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5791380/ https://www.ncbi.nlm.nih.gov/pubmed/29382320 http://dx.doi.org/10.1186/s12859-018-2044-2 |
_version_ | 1783296623662596096 |
---|---|
author | Rueda, Ana Julia Velez Monzon, Alexander Miguel Ardanaz, Sebastián M. Iglesias, Luis E. Parisi, Gustavo |
author_facet | Rueda, Ana Julia Velez Monzon, Alexander Miguel Ardanaz, Sebastián M. Iglesias, Luis E. Parisi, Gustavo |
author_sort | Rueda, Ana Julia Velez |
collection | PubMed |
description | BACKGROUND: Biocatalysis in organic solvents is nowadays a common practice with a large potential in Biotechnology. Several studies report that proteins which are co-crystallized or soaked in organic solvents preserve their fold integrity showing almost identical arrangements when compared to their aqueous forms. However, it is well established that the catalytic activity of proteins in organic solvents is much lower than in water. In order to explain this diminished activity and to further characterize the behaviour of proteins in non-aqueous environments, we performed a large-scale analysis (1737 proteins) of the conformational diversity of proteins crystallized in aqueous and co-crystallized or soaked in non-aqueous media. RESULTS: Using proteins’ experimentally determined conformational diversity taken from CoDNaS database, we found that proteins in non-aqueous media display much lower conformational diversity when compared to the corresponding conformers obtained in water. When conformational diversity is compared between conformers obtained in different non-aqueous media, their structural differences are larger and mostly independent of the presence of cognate ligands. We also found that conformers corresponding to non-aqueous media have larger but less flexible cavities, lower number of disordered regions and lower active-site residue mobility. CONCLUSIONS: Our results show that non-aqueous media conformers have specific structural features and that they do not adopt extreme conformations found in aqueous media. This makes them clearly different from their corresponding aqueous conformers. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2044-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5791380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-57913802018-02-12 Large scale analysis of protein conformational transitions from aqueous to non-aqueous media Rueda, Ana Julia Velez Monzon, Alexander Miguel Ardanaz, Sebastián M. Iglesias, Luis E. Parisi, Gustavo BMC Bioinformatics Research Article BACKGROUND: Biocatalysis in organic solvents is nowadays a common practice with a large potential in Biotechnology. Several studies report that proteins which are co-crystallized or soaked in organic solvents preserve their fold integrity showing almost identical arrangements when compared to their aqueous forms. However, it is well established that the catalytic activity of proteins in organic solvents is much lower than in water. In order to explain this diminished activity and to further characterize the behaviour of proteins in non-aqueous environments, we performed a large-scale analysis (1737 proteins) of the conformational diversity of proteins crystallized in aqueous and co-crystallized or soaked in non-aqueous media. RESULTS: Using proteins’ experimentally determined conformational diversity taken from CoDNaS database, we found that proteins in non-aqueous media display much lower conformational diversity when compared to the corresponding conformers obtained in water. When conformational diversity is compared between conformers obtained in different non-aqueous media, their structural differences are larger and mostly independent of the presence of cognate ligands. We also found that conformers corresponding to non-aqueous media have larger but less flexible cavities, lower number of disordered regions and lower active-site residue mobility. CONCLUSIONS: Our results show that non-aqueous media conformers have specific structural features and that they do not adopt extreme conformations found in aqueous media. This makes them clearly different from their corresponding aqueous conformers. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2044-2) contains supplementary material, which is available to authorized users. BioMed Central 2018-01-30 /pmc/articles/PMC5791380/ /pubmed/29382320 http://dx.doi.org/10.1186/s12859-018-2044-2 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Rueda, Ana Julia Velez Monzon, Alexander Miguel Ardanaz, Sebastián M. Iglesias, Luis E. Parisi, Gustavo Large scale analysis of protein conformational transitions from aqueous to non-aqueous media |
title | Large scale analysis of protein conformational transitions from aqueous to non-aqueous media |
title_full | Large scale analysis of protein conformational transitions from aqueous to non-aqueous media |
title_fullStr | Large scale analysis of protein conformational transitions from aqueous to non-aqueous media |
title_full_unstemmed | Large scale analysis of protein conformational transitions from aqueous to non-aqueous media |
title_short | Large scale analysis of protein conformational transitions from aqueous to non-aqueous media |
title_sort | large scale analysis of protein conformational transitions from aqueous to non-aqueous media |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5791380/ https://www.ncbi.nlm.nih.gov/pubmed/29382320 http://dx.doi.org/10.1186/s12859-018-2044-2 |
work_keys_str_mv | AT ruedaanajuliavelez largescaleanalysisofproteinconformationaltransitionsfromaqueoustononaqueousmedia AT monzonalexandermiguel largescaleanalysisofproteinconformationaltransitionsfromaqueoustononaqueousmedia AT ardanazsebastianm largescaleanalysisofproteinconformationaltransitionsfromaqueoustononaqueousmedia AT iglesiasluise largescaleanalysisofproteinconformationaltransitionsfromaqueoustononaqueousmedia AT parisigustavo largescaleanalysisofproteinconformationaltransitionsfromaqueoustononaqueousmedia |