Cargando…

MacroH2A1.1 regulates mitochondrial respiration by limiting nuclear NAD(+) consumption

Histone variants are structural components of eukaryotic chromatin that can replace replication-coupled histones in the nucleosome. The histone variant macroH2A.1.1 contains a macrodomain able to bind NAD(+) derived metabolites. Here, we report that macroH2A.1.1 is rapidly induced during myogenic di...

Descripción completa

Detalles Bibliográficos
Autores principales: Posavec Marjanović, Melanija, Hurtado-Bagès, Sarah, Lassi, Maximilian, Valero, Vanesa, Malinverni, Roberto, Delage, Hélène, Navarro, Miriam, Corujo, David, Guberovic, Iva, Douet, Julien, Gama-Perez, Pau, Garcia-Roves, Pablo M., Ahel, Ivan, Ladurner, Andreas G., Yanes, Oscar, Bouvet, Philippe, Suelves, Mònica, Teperino, Raffaele, Pospisilik, J. Andrew, Buschbeck, Marcus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5791885/
https://www.ncbi.nlm.nih.gov/pubmed/28991266
http://dx.doi.org/10.1038/nsmb.3481
Descripción
Sumario:Histone variants are structural components of eukaryotic chromatin that can replace replication-coupled histones in the nucleosome. The histone variant macroH2A.1.1 contains a macrodomain able to bind NAD(+) derived metabolites. Here, we report that macroH2A.1.1 is rapidly induced during myogenic differentiation through a switch in alternative splicing. Importantly, myotubes lacking macroH2A.1.1 display a defect in mitochondrial respiratory capacity. We find that the metabolite-interacting macrodomain is essential for sustaining optimal mitochondrial function, but dispensable for gene regulation. Through direct binding, macroH2A.1.1 inhibits basal poly-ADP ribose polymerase 1 activity and thus reduces nuclear NAD+ consumption. Consequentially, accumulation of the NAD(+) precursor NMN allows the maintenance of mitochondrial NAD(+) pools critical for respiration. Our data indicate that macroH2A.1.1-containing chromatin regulates mitochondrial respiration by limiting nuclear NAD+ consumption and establishing a buffer of NAD(+) precursors in differentiated cells.