Cargando…

Ant genera identification using an ensemble of convolutional neural networks

Works requiring taxonomic knowledge face several challenges, such as arduous identification of many taxa and an insufficient number of taxonomists to identify a great deal of collected organisms. Machine learning tools, particularly convolutional neural networks (CNNs), are then welcome to automatic...

Descripción completa

Detalles Bibliográficos
Autores principales: Marques, Alan Caio R., M. Raimundo, Marcos, B. Cavalheiro, Ellen Marianne, F. P. Salles, Luis, Lyra, Christiano, J. Von Zuben, Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792021/
https://www.ncbi.nlm.nih.gov/pubmed/29385214
http://dx.doi.org/10.1371/journal.pone.0192011
_version_ 1783296696874172416
author Marques, Alan Caio R.
M. Raimundo, Marcos
B. Cavalheiro, Ellen Marianne
F. P. Salles, Luis
Lyra, Christiano
J. Von Zuben, Fernando
author_facet Marques, Alan Caio R.
M. Raimundo, Marcos
B. Cavalheiro, Ellen Marianne
F. P. Salles, Luis
Lyra, Christiano
J. Von Zuben, Fernando
author_sort Marques, Alan Caio R.
collection PubMed
description Works requiring taxonomic knowledge face several challenges, such as arduous identification of many taxa and an insufficient number of taxonomists to identify a great deal of collected organisms. Machine learning tools, particularly convolutional neural networks (CNNs), are then welcome to automatically generate high-performance classifiers from available data. Supported by the image datasets available at the largest online database on ant biology, the AntWeb (www.antweb.org), we propose here an ensemble of CNNs to identify ant genera directly from the head, profile and dorsal perspectives of ant images. Transfer learning is also considered to improve the individual performance of the CNN classifiers. The performance achieved by the classifiers is diverse enough to promote a reduction in the overall classification error when they are combined in an ensemble, achieving an accuracy rate of over 80% on top-1 classification and an accuracy of over 90% on top-3 classification.
format Online
Article
Text
id pubmed-5792021
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-57920212018-02-09 Ant genera identification using an ensemble of convolutional neural networks Marques, Alan Caio R. M. Raimundo, Marcos B. Cavalheiro, Ellen Marianne F. P. Salles, Luis Lyra, Christiano J. Von Zuben, Fernando PLoS One Research Article Works requiring taxonomic knowledge face several challenges, such as arduous identification of many taxa and an insufficient number of taxonomists to identify a great deal of collected organisms. Machine learning tools, particularly convolutional neural networks (CNNs), are then welcome to automatically generate high-performance classifiers from available data. Supported by the image datasets available at the largest online database on ant biology, the AntWeb (www.antweb.org), we propose here an ensemble of CNNs to identify ant genera directly from the head, profile and dorsal perspectives of ant images. Transfer learning is also considered to improve the individual performance of the CNN classifiers. The performance achieved by the classifiers is diverse enough to promote a reduction in the overall classification error when they are combined in an ensemble, achieving an accuracy rate of over 80% on top-1 classification and an accuracy of over 90% on top-3 classification. Public Library of Science 2018-01-31 /pmc/articles/PMC5792021/ /pubmed/29385214 http://dx.doi.org/10.1371/journal.pone.0192011 Text en © 2018 Marques et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Marques, Alan Caio R.
M. Raimundo, Marcos
B. Cavalheiro, Ellen Marianne
F. P. Salles, Luis
Lyra, Christiano
J. Von Zuben, Fernando
Ant genera identification using an ensemble of convolutional neural networks
title Ant genera identification using an ensemble of convolutional neural networks
title_full Ant genera identification using an ensemble of convolutional neural networks
title_fullStr Ant genera identification using an ensemble of convolutional neural networks
title_full_unstemmed Ant genera identification using an ensemble of convolutional neural networks
title_short Ant genera identification using an ensemble of convolutional neural networks
title_sort ant genera identification using an ensemble of convolutional neural networks
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792021/
https://www.ncbi.nlm.nih.gov/pubmed/29385214
http://dx.doi.org/10.1371/journal.pone.0192011
work_keys_str_mv AT marquesalancaior antgeneraidentificationusinganensembleofconvolutionalneuralnetworks
AT mraimundomarcos antgeneraidentificationusinganensembleofconvolutionalneuralnetworks
AT bcavalheiroellenmarianne antgeneraidentificationusinganensembleofconvolutionalneuralnetworks
AT fpsallesluis antgeneraidentificationusinganensembleofconvolutionalneuralnetworks
AT lyrachristiano antgeneraidentificationusinganensembleofconvolutionalneuralnetworks
AT jvonzubenfernando antgeneraidentificationusinganensembleofconvolutionalneuralnetworks