Cargando…
Formation of pollen apertures in Arabidopsis requires an interplay between male meiosis, development of INP1-decorated plasma membrane domains, and the callose wall
In most plant species, surfaces of pollen grains display characteristic patterns of apertures, formed by the gaps in the pollen wall exine. The aperture patterns are species-specific and tend to be very precise, with pollen of each species usually developing a certain number of apertures placed at d...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792127/ https://www.ncbi.nlm.nih.gov/pubmed/29173018 http://dx.doi.org/10.1080/15592324.2017.1393136 |
Sumario: | In most plant species, surfaces of pollen grains display characteristic patterns of apertures, formed by the gaps in the pollen wall exine. The aperture patterns are species-specific and tend to be very precise, with pollen of each species usually developing a certain number of apertures placed at distinct positions and acquiring specific morphology. The precision with which pollen apertures are produced suggests that developing pollen grains possess robust mechanisms that allow them to specify particular membrane domains as the future-aperture sites and to protect these sites from exine deposition. Recently, we demonstrated that formation of apertures in Arabidopsis depends on certain membrane domains attracting a novel protein, INP1, that assembles into punctate lines and helps to anchor these membrane domains to the overlying callose wall. Here we show that in the absence of male meiosis the ability of INP1 to assemble into lines at the pollen surface is compromised. However, INP1 still arrives to the pollen surface and mediates the interactions between the plasma membrane and the callose wall, potentially contributing to the formation of grossly abnormal patterns on pollen surface. |
---|