Cargando…

Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway

BACKGROUND/OBJECTIVES: Sageretia thea is traditionally used as a medicinal herb to treat various diseases, including skin disorders, in China and Korea. This study evaluated the inhibitory effect of Sageretia thea fruit on melanogenesis and its underlying mechanisms in B16F10 mouse melanoma cells. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Ko, Gyeong-A, Shrestha, Sabina, Kim Cho, Somi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Nutrition Society and the Korean Society of Community Nutrition 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792254/
https://www.ncbi.nlm.nih.gov/pubmed/29399291
http://dx.doi.org/10.4162/nrp.2018.12.1.3
_version_ 1783296712289288192
author Ko, Gyeong-A
Shrestha, Sabina
Kim Cho, Somi
author_facet Ko, Gyeong-A
Shrestha, Sabina
Kim Cho, Somi
author_sort Ko, Gyeong-A
collection PubMed
description BACKGROUND/OBJECTIVES: Sageretia thea is traditionally used as a medicinal herb to treat various diseases, including skin disorders, in China and Korea. This study evaluated the inhibitory effect of Sageretia thea fruit on melanogenesis and its underlying mechanisms in B16F10 mouse melanoma cells. The active chemical compounds in anti-melanogenesis were determined in Sageretia thea. MATERIALS/METHODS: Solvent fractions from the crude extract were investigated for anti-melanogenic activities. These activities and the mechanism of anti-melanogenesis in B16F10 cells were examined by determining melanin content and tyrosinase activity, and by performing western blotting. RESULTS: The n-hexane fraction of Sageretia thea fruit (HFSF) exhibited significant anti-melanogenic activity among the various solvent fractions without reducing viability of B16F10 cells. The HFSF suppressed the expression of tyrosinase and tyrosinase-related protein 1 (TRP1). The reduction of microphthalmia-associated transcription factor (MITF) expression by the HFSF was mediated by the Akt/glycogen synthase kinase 3 beta (GSK3β) signaling pathway, which promotes the reduction of β-catenin. Treatment with the GSK3β inhibitor 6-bromoindirubin-3'-oxime (BIO) restored HFSF-induced inhibition of MITF expression. The HFSF bioactive constituents responsible for anti-melanogenic activity were identified by bioassay-guided fractionation and gas chromatography-mass spectrometry analysis as methyl linoleate and methyl linolenate. CONCLUSIONS: These results indicate that HFSF and its constituents, methyl linoleate and methyl linolenate, could be used as whitening agents in cosmetics and have potential for treating hyperpigmentation disorders in the clinic.
format Online
Article
Text
id pubmed-5792254
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Korean Nutrition Society and the Korean Society of Community Nutrition
record_format MEDLINE/PubMed
spelling pubmed-57922542018-02-02 Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway Ko, Gyeong-A Shrestha, Sabina Kim Cho, Somi Nutr Res Pract Original Research BACKGROUND/OBJECTIVES: Sageretia thea is traditionally used as a medicinal herb to treat various diseases, including skin disorders, in China and Korea. This study evaluated the inhibitory effect of Sageretia thea fruit on melanogenesis and its underlying mechanisms in B16F10 mouse melanoma cells. The active chemical compounds in anti-melanogenesis were determined in Sageretia thea. MATERIALS/METHODS: Solvent fractions from the crude extract were investigated for anti-melanogenic activities. These activities and the mechanism of anti-melanogenesis in B16F10 cells were examined by determining melanin content and tyrosinase activity, and by performing western blotting. RESULTS: The n-hexane fraction of Sageretia thea fruit (HFSF) exhibited significant anti-melanogenic activity among the various solvent fractions without reducing viability of B16F10 cells. The HFSF suppressed the expression of tyrosinase and tyrosinase-related protein 1 (TRP1). The reduction of microphthalmia-associated transcription factor (MITF) expression by the HFSF was mediated by the Akt/glycogen synthase kinase 3 beta (GSK3β) signaling pathway, which promotes the reduction of β-catenin. Treatment with the GSK3β inhibitor 6-bromoindirubin-3'-oxime (BIO) restored HFSF-induced inhibition of MITF expression. The HFSF bioactive constituents responsible for anti-melanogenic activity were identified by bioassay-guided fractionation and gas chromatography-mass spectrometry analysis as methyl linoleate and methyl linolenate. CONCLUSIONS: These results indicate that HFSF and its constituents, methyl linoleate and methyl linolenate, could be used as whitening agents in cosmetics and have potential for treating hyperpigmentation disorders in the clinic. The Korean Nutrition Society and the Korean Society of Community Nutrition 2018-02 2018-01-18 /pmc/articles/PMC5792254/ /pubmed/29399291 http://dx.doi.org/10.4162/nrp.2018.12.1.3 Text en ©2018 The Korean Nutrition Society and the Korean Society of Community Nutrition http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Ko, Gyeong-A
Shrestha, Sabina
Kim Cho, Somi
Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway
title Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway
title_full Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway
title_fullStr Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway
title_full_unstemmed Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway
title_short Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway
title_sort sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the akt/gsk3β signaling pathway
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792254/
https://www.ncbi.nlm.nih.gov/pubmed/29399291
http://dx.doi.org/10.4162/nrp.2018.12.1.3
work_keys_str_mv AT kogyeonga sageretiatheafruitextractsrichinmethyllinoleateandmethyllinolenatedownregulatemelanogenesisviatheaktgsk3bsignalingpathway
AT shresthasabina sageretiatheafruitextractsrichinmethyllinoleateandmethyllinolenatedownregulatemelanogenesisviatheaktgsk3bsignalingpathway
AT kimchosomi sageretiatheafruitextractsrichinmethyllinoleateandmethyllinolenatedownregulatemelanogenesisviatheaktgsk3bsignalingpathway