Cargando…
Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway
BACKGROUND/OBJECTIVES: Sageretia thea is traditionally used as a medicinal herb to treat various diseases, including skin disorders, in China and Korea. This study evaluated the inhibitory effect of Sageretia thea fruit on melanogenesis and its underlying mechanisms in B16F10 mouse melanoma cells. T...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Nutrition Society and the Korean Society of Community Nutrition
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792254/ https://www.ncbi.nlm.nih.gov/pubmed/29399291 http://dx.doi.org/10.4162/nrp.2018.12.1.3 |
_version_ | 1783296712289288192 |
---|---|
author | Ko, Gyeong-A Shrestha, Sabina Kim Cho, Somi |
author_facet | Ko, Gyeong-A Shrestha, Sabina Kim Cho, Somi |
author_sort | Ko, Gyeong-A |
collection | PubMed |
description | BACKGROUND/OBJECTIVES: Sageretia thea is traditionally used as a medicinal herb to treat various diseases, including skin disorders, in China and Korea. This study evaluated the inhibitory effect of Sageretia thea fruit on melanogenesis and its underlying mechanisms in B16F10 mouse melanoma cells. The active chemical compounds in anti-melanogenesis were determined in Sageretia thea. MATERIALS/METHODS: Solvent fractions from the crude extract were investigated for anti-melanogenic activities. These activities and the mechanism of anti-melanogenesis in B16F10 cells were examined by determining melanin content and tyrosinase activity, and by performing western blotting. RESULTS: The n-hexane fraction of Sageretia thea fruit (HFSF) exhibited significant anti-melanogenic activity among the various solvent fractions without reducing viability of B16F10 cells. The HFSF suppressed the expression of tyrosinase and tyrosinase-related protein 1 (TRP1). The reduction of microphthalmia-associated transcription factor (MITF) expression by the HFSF was mediated by the Akt/glycogen synthase kinase 3 beta (GSK3β) signaling pathway, which promotes the reduction of β-catenin. Treatment with the GSK3β inhibitor 6-bromoindirubin-3'-oxime (BIO) restored HFSF-induced inhibition of MITF expression. The HFSF bioactive constituents responsible for anti-melanogenic activity were identified by bioassay-guided fractionation and gas chromatography-mass spectrometry analysis as methyl linoleate and methyl linolenate. CONCLUSIONS: These results indicate that HFSF and its constituents, methyl linoleate and methyl linolenate, could be used as whitening agents in cosmetics and have potential for treating hyperpigmentation disorders in the clinic. |
format | Online Article Text |
id | pubmed-5792254 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Korean Nutrition Society and the Korean Society of Community Nutrition |
record_format | MEDLINE/PubMed |
spelling | pubmed-57922542018-02-02 Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway Ko, Gyeong-A Shrestha, Sabina Kim Cho, Somi Nutr Res Pract Original Research BACKGROUND/OBJECTIVES: Sageretia thea is traditionally used as a medicinal herb to treat various diseases, including skin disorders, in China and Korea. This study evaluated the inhibitory effect of Sageretia thea fruit on melanogenesis and its underlying mechanisms in B16F10 mouse melanoma cells. The active chemical compounds in anti-melanogenesis were determined in Sageretia thea. MATERIALS/METHODS: Solvent fractions from the crude extract were investigated for anti-melanogenic activities. These activities and the mechanism of anti-melanogenesis in B16F10 cells were examined by determining melanin content and tyrosinase activity, and by performing western blotting. RESULTS: The n-hexane fraction of Sageretia thea fruit (HFSF) exhibited significant anti-melanogenic activity among the various solvent fractions without reducing viability of B16F10 cells. The HFSF suppressed the expression of tyrosinase and tyrosinase-related protein 1 (TRP1). The reduction of microphthalmia-associated transcription factor (MITF) expression by the HFSF was mediated by the Akt/glycogen synthase kinase 3 beta (GSK3β) signaling pathway, which promotes the reduction of β-catenin. Treatment with the GSK3β inhibitor 6-bromoindirubin-3'-oxime (BIO) restored HFSF-induced inhibition of MITF expression. The HFSF bioactive constituents responsible for anti-melanogenic activity were identified by bioassay-guided fractionation and gas chromatography-mass spectrometry analysis as methyl linoleate and methyl linolenate. CONCLUSIONS: These results indicate that HFSF and its constituents, methyl linoleate and methyl linolenate, could be used as whitening agents in cosmetics and have potential for treating hyperpigmentation disorders in the clinic. The Korean Nutrition Society and the Korean Society of Community Nutrition 2018-02 2018-01-18 /pmc/articles/PMC5792254/ /pubmed/29399291 http://dx.doi.org/10.4162/nrp.2018.12.1.3 Text en ©2018 The Korean Nutrition Society and the Korean Society of Community Nutrition http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Ko, Gyeong-A Shrestha, Sabina Kim Cho, Somi Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway |
title | Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway |
title_full | Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway |
title_fullStr | Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway |
title_full_unstemmed | Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway |
title_short | Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway |
title_sort | sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the akt/gsk3β signaling pathway |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792254/ https://www.ncbi.nlm.nih.gov/pubmed/29399291 http://dx.doi.org/10.4162/nrp.2018.12.1.3 |
work_keys_str_mv | AT kogyeonga sageretiatheafruitextractsrichinmethyllinoleateandmethyllinolenatedownregulatemelanogenesisviatheaktgsk3bsignalingpathway AT shresthasabina sageretiatheafruitextractsrichinmethyllinoleateandmethyllinolenatedownregulatemelanogenesisviatheaktgsk3bsignalingpathway AT kimchosomi sageretiatheafruitextractsrichinmethyllinoleateandmethyllinolenatedownregulatemelanogenesisviatheaktgsk3bsignalingpathway |