Cargando…
MR-based motion correction for cardiac PET parametric imaging: a simulation study
BACKGROUND: Both cardiac and respiratory motions bias the kinetic parameters measured by dynamic PET. The aim of this study was to perform a realistic positron emission tomography-magnetic resonance (PET-MR) simulation study using 4D XCAT to evaluate the impact of MR-based motion correction on the e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792384/ https://www.ncbi.nlm.nih.gov/pubmed/29388075 http://dx.doi.org/10.1186/s40658-017-0200-9 |
Sumario: | BACKGROUND: Both cardiac and respiratory motions bias the kinetic parameters measured by dynamic PET. The aim of this study was to perform a realistic positron emission tomography-magnetic resonance (PET-MR) simulation study using 4D XCAT to evaluate the impact of MR-based motion correction on the estimation of PET myocardial kinetic parameters using PET-MR. Dynamic activity distributions were obtained based on a one-tissue compartment model with realistic kinetic parameters and an arterial input function. Realistic proton density/T1/T2 values were also defined for the MRI simulation. Two types of motion patterns, cardiac motion only (CM) and both cardiac and respiratory motions (CRM), were generated. PET sinograms were obtained by the projection of the activity distributions. PET image for each time frame was obtained using static (ST), gated (GA), non-motion-corrected (NMC), and motion-corrected (MC) methods. Voxel-wise unweighted least squares fitting of the dynamic PET data was then performed to obtain K(1) values for each study. For each study, the mean and standard deviation of K(1) values were computed for four regions of interest in the myocardium across 25 noise realizations. RESULTS: Both cardiac and respiratory motions introduce blurring in the PET parametric images if the motion is not corrected. Conventional cardiac gating is limited by high noise level on parametric images. Dual cardiac and respiratory gating further increases the noise level. In contrast to GA, the MR-based MC method reduces motion blurring in parametric images without increasing noise level. It also improves the myocardial defect delineation as compared to NMC method. Finally, the MR-based MC method yields lower bias and variance in K(1) values than NMC and GA, respectively. The reductions of K(1) bias by MR-based MC are 7.7, 5.1, 15.7, and 29.9% in four selected 0.18-mL myocardial regions of interest, respectively, as compared to NMC for CRM. MR-based MC yields 85.9, 75.3, 71.8, and 95.2% less K(1) standard deviation in the four regions, respectively, as compared to GA for CRM. CONCLUSIONS: This simulation study suggests that the MR-based motion-correction method using PET-MR greatly reduces motion blurring on parametric images and yields less K(1) bias without increasing noise level. |
---|