Cargando…

Identification of valid reference genes for mRNA and microRNA normalisation in prostate cancer cell lines

RT-qPCR offers high sensitivity, for accurate interpretations of qPCR results however, normalisation using suitable reference genes is fundamental. Androgens can regulate transcriptional expression including reference gene expression in prostate cancer. In this study, we evaluated ten mRNA and six n...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Hui, Ma, Teng-Fei, Lin, Jie, Liu, Lin-Lin, Sun, Wei-Jie, Guo, Li-Xia, Wang, Si-Qi, Otecko, Newton O., Zhang, Ya-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792445/
https://www.ncbi.nlm.nih.gov/pubmed/29386530
http://dx.doi.org/10.1038/s41598-018-19458-z
Descripción
Sumario:RT-qPCR offers high sensitivity, for accurate interpretations of qPCR results however, normalisation using suitable reference genes is fundamental. Androgens can regulate transcriptional expression including reference gene expression in prostate cancer. In this study, we evaluated ten mRNA and six non-protein coding RNA reference genes in five prostate cell lines under varied dihydrotestosterone (DHT) treatments. We validated the effects of DHT-treatments using media containing charcoal-stripped serum prior to DHT stimulation on the test samples by Western blot experiments. Reference gene expression stability was analysed using three programs (geNorm, NormFinder and BestKeeper), and the recommended comprehensive ranking is provided. Our results reveal that ACTB and GAPDH, and miR-16 and miR-1228-3p are the most suitable mRNA and miRNA reference genes across all cell lines, respectively. Considering prostate cancer cell types, ACTB/GAPDH and ACTB/HPRT1 are the most suitable reference gene combinations for mRNA analysis, and miR-16/miR-1228-3p and RNU6-2/RNU43 for miRNA analysis in AR+, and AR− and normal cell lines, respectively. Comparison of relative target gene (PCA3 and miR-141) expression reveals different patterns depending on reference genes used for normalisation. To our knowledge, this is the first report on validation of reference genes under different DHT treatments in prostate cancer cells. This study provides insights for discovery of reliable DHT-regulated genes in prostate cells.