Cargando…

Lithosphere strain rate and stress field orientations near the Alpine arc in Switzerland

In this study we test whether principal components of the strain rate and stress tensors align within Switzerland. We find that 1) Helvetic Nappes line (HNL) is the relevant tectonic boundary to define different domains of crustal stress/surface strain rates orientations and 2) orientations of T- ax...

Descripción completa

Detalles Bibliográficos
Autores principales: Houlié, N., Woessner, J., Giardini, D., Rothacher, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792518/
https://www.ncbi.nlm.nih.gov/pubmed/29386558
http://dx.doi.org/10.1038/s41598-018-20253-z
Descripción
Sumario:In this study we test whether principal components of the strain rate and stress tensors align within Switzerland. We find that 1) Helvetic Nappes line (HNL) is the relevant tectonic boundary to define different domains of crustal stress/surface strain rates orientations and 2) orientations of T- axes (of moment tensor solutions) and long-term asthenosphere cumulative finite strain (from SKS shear wave splitting) are consistent at the scale of the Alpine arc in Switzerland. At a more local scale, we find that seismic activity and surface deformation are in agreement but in three regions (Basel, Swiss Jura and Ticino); possibly because of the low levels of deformation and/or seismicity. In the Basel area, deep seismicity exists while surface deformation is absent. In the Ticino and the Swiss Jura, where seismic activity is close to absent, surface deformation is detected at a level of ~2 10(−8)/yr (~6.3 10(−16)/s).