Cargando…
Bottom‐up processes drive reproductive success in an apex predator
One of the central goals of the field of population ecology is to identify the drivers of population dynamics, particularly in the context of predator–prey relationships. Understanding the relative role of top‐down versus bottom‐up drivers is of particular interest in understanding ecosystem dynamic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792545/ https://www.ncbi.nlm.nih.gov/pubmed/29435257 http://dx.doi.org/10.1002/ece3.3800 |
Sumario: | One of the central goals of the field of population ecology is to identify the drivers of population dynamics, particularly in the context of predator–prey relationships. Understanding the relative role of top‐down versus bottom‐up drivers is of particular interest in understanding ecosystem dynamics. Our goal was to explore predator–prey relationships in a boreal ecosystem in interior Alaska through the use of multispecies long‐term monitoring data. We used 29 years of field data and a dynamic multistate site occupancy modeling approach to explore the trophic relationships between an apex predator, the golden eagle, and cyclic populations of the two primary prey species available to eagles early in the breeding season, snowshoe hare and willow ptarmigan. We found that golden eagle reproductive success was reliant on prey numbers, but also responded prior to changes in the phase of the snowshoe hare population cycle and failed to respond to variation in hare cycle amplitude. There was no lagged response to ptarmigan populations, and ptarmigan populations recovered quickly from the low phase. Together, these results suggested that eagle reproduction is largely driven by bottom‐up processes, with little evidence of top‐down control of either ptarmigan or hare populations. Although the relationship between golden eagle reproductive success and prey abundance had been previously established, here we established prey populations are likely driving eagle dynamics through bottom‐up processes. The key to this insight was our focus on golden eagle reproductive parameters rather than overall abundance. Although our inference is limited to the golden eagle–hare–ptarmigan relationships we studied, our results suggest caution in interpreting predator–prey abundance patterns among other species as strong evidence for top‐down control. |
---|