Cargando…
A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures
In this study, the low energy radiation responses of AlAs, GaAs and GaAs/AlAs superlattice are simulated and the radiation damage effects on their electronic structures are investigated. It is found that the threshold displacement energies for AlAs are generally larger than those for GaAs, i.e., the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792629/ https://www.ncbi.nlm.nih.gov/pubmed/29386543 http://dx.doi.org/10.1038/s41598-018-20155-0 |
Sumario: | In this study, the low energy radiation responses of AlAs, GaAs and GaAs/AlAs superlattice are simulated and the radiation damage effects on their electronic structures are investigated. It is found that the threshold displacement energies for AlAs are generally larger than those for GaAs, i.e., the atoms in AlAs are more difficult to be displaced than those in GaAs under radiation environment. As for GaAs/AlAs superlattice, the Ga and Al atoms are more susceptible to the radiation than those in the bulk AlAs and GaAs, whereas the As atoms need comparable or much larger energies to be displaced than those in the bulk states. The created defects are generally Frenkel pairs, and a few antisite defects are also created in the superlattice structure. The created defects are found to have profound effects on the electronic properties of GaAs/AlAs superlattice, in which charge transfer, redistribution and even accumulation take place, and band gap narrowing and even metallicity are induced in some cases. This study shows that it is necessary to enhance the radiation tolerance of GaAs/AlAs superlattice to improve their performance under irradiation. |
---|