Cargando…

Rhodol Derivatives as Selective Fluorescent Probes for the Detection of Hg(II) Ions and the Bioimaging of Hypochlorous Acid

Two sensors, 1 with a spirolactone group and 2 with a spirolactam group containing a phenyl isothiocyanate moiety, based on rhodol, were designed and synthesized in order to obtain materials with excellent optical properties for the detection of environmentally and biologically important Hg(2+) and...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ling, Wang, Shu, Lan, Hongxia, Gong, Guiyi, Zhu, Yifan, Tse, Yu Chung, Wong, Keith Man‐Chung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792738/
https://www.ncbi.nlm.nih.gov/pubmed/29435399
http://dx.doi.org/10.1002/open.201700154
Descripción
Sumario:Two sensors, 1 with a spirolactone group and 2 with a spirolactam group containing a phenyl isothiocyanate moiety, based on rhodol, were designed and synthesized in order to obtain materials with excellent optical properties for the detection of environmentally and biologically important Hg(2+) and hypochlorous acid (HClO) ions. The crystal structure of 1 revealed two moieties, a rhodamine‐like portion with a spirolactone and a fluorescein‐like portion without a spirolactone. In the absence of analyte, 1 produced an optical output with a maximum absorption and emission at 475 and 570 nm, respectively, which was attributed to the fluorescein‐like moiety without a spirolactone. In contrast, the rhodamine‐like moiety containing a spirolactone was activated by the addition of H(+) or Hg(2+) ions, and 1 yielded new absorption and emission peaks at 530 and 612 nm, respectively. Further functionalization with a phenyl isothiocyanate group afforded 2, a fluorescent probe for HClO. High selectivity and sensitivity towards the hypochlorite ion were anticipated, owing to the stoichiometric and irreversible formation of a thiosemicarbazide group, which led to dramatic fluorescence responses. With good functionality at physiological pH, probe 2 was successfully used to image HClO in HeLa cells.