Cargando…

How water availability influences morphological and biomechanical properties in the one-leaf plant Monophyllaea horsfieldii

In its natural habitat, the one-leaf plant Monophyllaea horsfieldii (Gesneriaceae) shows striking postural changes and dramatic loss of stability in response to intermittently occurring droughts. As the morphological, anatomical and biomechanical bases of these alterations are as yet unclear, we exa...

Descripción completa

Detalles Bibliográficos
Autores principales: Kampowski, Tim, Mylo, Max David, Poppinga, Simon, Speck, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792897/
https://www.ncbi.nlm.nih.gov/pubmed/29410820
http://dx.doi.org/10.1098/rsos.171076
Descripción
Sumario:In its natural habitat, the one-leaf plant Monophyllaea horsfieldii (Gesneriaceae) shows striking postural changes and dramatic loss of stability in response to intermittently occurring droughts. As the morphological, anatomical and biomechanical bases of these alterations are as yet unclear, we examined the influence of varying water contents on M. horsfieldii by conducting dehydration–rehydration experiments together with various imaging techniques as well as quantitative bending and turgor pressure measurements. As long as only moderate water stress was applied, gradual reductions in hypocotyl diameters and structural bending moduli during dehydration were almost always rapidly recovered in acropetal direction upon rehydration. On an anatomical scale, M. horsfieldii hypocotyls revealed substantial water stress-induced alterations in parenchymatous tissues, whereas the cell form and structure of epidermal and vascular tissues hardly changed. In summary, the functional morphology and biomechanics of M. horsfieldii hypocotyls directly correlated with water status alterations and associated physiological parameters (i.e. turgor pressure). Moreover, M. horsfieldii showed only little passive structural–functional adaptations to dehydration in comparison with poikilohydrous Ramonda myconi.