Cargando…

Effect of curvature on wetting and dewetting of proboscises of butterflies and moths

Proboscises of butterflies are modelled as elliptical hollow fibres that can be bent into coils. The behaviour of coating films on such complex fibres is investigated to explain the remarkable ability of these insects to control liquid collection after dipping the proboscis into a flower or pressing...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Chengqi, Beard, Charles E., Adler, Peter H., Kornev, Konstantin G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792911/
https://www.ncbi.nlm.nih.gov/pubmed/29410834
http://dx.doi.org/10.1098/rsos.171241
Descripción
Sumario:Proboscises of butterflies are modelled as elliptical hollow fibres that can be bent into coils. The behaviour of coating films on such complex fibres is investigated to explain the remarkable ability of these insects to control liquid collection after dipping the proboscis into a flower or pressing and mopping it over a food source. By using a thin-film approximation with the air–liquid interface positioned almost parallel to the fibre surface, capillary pressure was estimated from the profile of the fibre surfaces supporting the films. The film is always unstable and the proboscis shape and movements have adaptive value in collecting fluid: coiling and bending of proboscises of butterflies and moths facilitate fluid collection. Some practical applications of this effect are discussed with regard to fibre engineering.