Cargando…

The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model

BACKGROUND: Polyether-ether-ketone (PEEK), cobalt-chromium-molybdenum (CoCrMo), and highly cross-linked polyethylene (HXLPE) are biomaterials used in orthopedic implants; their wear particles are considered to induce peri-implant osteolysis. We examined whether different particle types induce the sa...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Zhe, Zhu, Zhonglin, Wang, You
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793374/
https://www.ncbi.nlm.nih.gov/pubmed/29386035
http://dx.doi.org/10.1186/s13018-018-0736-y
_version_ 1783296937755148288
author Du, Zhe
Zhu, Zhonglin
Wang, You
author_facet Du, Zhe
Zhu, Zhonglin
Wang, You
author_sort Du, Zhe
collection PubMed
description BACKGROUND: Polyether-ether-ketone (PEEK), cobalt-chromium-molybdenum (CoCrMo), and highly cross-linked polyethylene (HXLPE) are biomaterials used in orthopedic implants; their wear particles are considered to induce peri-implant osteolysis. We examined whether different particle types induce the same degree of peri-implant osteolysis. METHODS: Forty female rabbits were randomly divided into four groups—the control group (n = 10), which received implantation operation and sham operation at 1 month postoperation; three experimental groups (n = 10 in each group), which received implantation operation along with administration of 0.1 mL of particle suspension (approximately 1.0 × 10(8) PEEK, CoCrMo, or HXLPE wear particles) into the knee joint at 1 month postoperation. All rabbits were sacrificed at 2 months postoperation. The synovium was removed and histologically assessed. The distal femurs with the implants were analyzed via micro-computed tomography (CT) and hard tissue biopsy. RESULTS: The average size of almost 90% of the particles was < 5 μm, indicating no significant difference in the three particle types. IL-1β, IL-8, TNFα, RANKL, and MCP-1 expression in PEEK and CoCrMo groups was high, while that in the HXLPE group was low. The bone density (BD) and bone volume/total volume (BV/TV) of the porous structures (part of the implants in all groups) in experimental groups did not decrease markedly (p > 0.05), while BD in the peripheral regions in experimental groups decreased markedly compared to control groups (p < 0.05). BV/TV in the peripheral regions was significantly decreased in PEEK and CoCrMo groups when compared to control group (p < 0.05), while no significant difference was noted between HXLPE and control groups (p > 0.05). The changes in BV observed in the hard tissue sections were consistent with those noted in the micro-CT findings. CONCLUSION: PEEK, CoCrMo, and HXLPE wear particles (approximately having the same size and doses) induce peri-implant osteolysis to a different degree: HXLPE particles induce peri-implant osteolysis to a mild degree, while PEEK and CoCrMo particles caused significant peri-implant osteolysis. In case of a porous implant, osteolysis occurred primarily in the peripheral region, rather than in the porous structures. Our findings would be helpful for implant designers to choose friction pairs in orthopedic components.
format Online
Article
Text
id pubmed-5793374
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-57933742018-02-12 The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model Du, Zhe Zhu, Zhonglin Wang, You J Orthop Surg Res Research Article BACKGROUND: Polyether-ether-ketone (PEEK), cobalt-chromium-molybdenum (CoCrMo), and highly cross-linked polyethylene (HXLPE) are biomaterials used in orthopedic implants; their wear particles are considered to induce peri-implant osteolysis. We examined whether different particle types induce the same degree of peri-implant osteolysis. METHODS: Forty female rabbits were randomly divided into four groups—the control group (n = 10), which received implantation operation and sham operation at 1 month postoperation; three experimental groups (n = 10 in each group), which received implantation operation along with administration of 0.1 mL of particle suspension (approximately 1.0 × 10(8) PEEK, CoCrMo, or HXLPE wear particles) into the knee joint at 1 month postoperation. All rabbits were sacrificed at 2 months postoperation. The synovium was removed and histologically assessed. The distal femurs with the implants were analyzed via micro-computed tomography (CT) and hard tissue biopsy. RESULTS: The average size of almost 90% of the particles was < 5 μm, indicating no significant difference in the three particle types. IL-1β, IL-8, TNFα, RANKL, and MCP-1 expression in PEEK and CoCrMo groups was high, while that in the HXLPE group was low. The bone density (BD) and bone volume/total volume (BV/TV) of the porous structures (part of the implants in all groups) in experimental groups did not decrease markedly (p > 0.05), while BD in the peripheral regions in experimental groups decreased markedly compared to control groups (p < 0.05). BV/TV in the peripheral regions was significantly decreased in PEEK and CoCrMo groups when compared to control group (p < 0.05), while no significant difference was noted between HXLPE and control groups (p > 0.05). The changes in BV observed in the hard tissue sections were consistent with those noted in the micro-CT findings. CONCLUSION: PEEK, CoCrMo, and HXLPE wear particles (approximately having the same size and doses) induce peri-implant osteolysis to a different degree: HXLPE particles induce peri-implant osteolysis to a mild degree, while PEEK and CoCrMo particles caused significant peri-implant osteolysis. In case of a porous implant, osteolysis occurred primarily in the peripheral region, rather than in the porous structures. Our findings would be helpful for implant designers to choose friction pairs in orthopedic components. BioMed Central 2018-01-31 /pmc/articles/PMC5793374/ /pubmed/29386035 http://dx.doi.org/10.1186/s13018-018-0736-y Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Du, Zhe
Zhu, Zhonglin
Wang, You
The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model
title The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model
title_full The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model
title_fullStr The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model
title_full_unstemmed The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model
title_short The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model
title_sort degree of peri-implant osteolysis induced by peek, cocrmo, and hxlpe wear particles: a study based on a porous ti6al4v implant in a rabbit model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793374/
https://www.ncbi.nlm.nih.gov/pubmed/29386035
http://dx.doi.org/10.1186/s13018-018-0736-y
work_keys_str_mv AT duzhe thedegreeofperiimplantosteolysisinducedbypeekcocrmoandhxlpewearparticlesastudybasedonaporousti6al4vimplantinarabbitmodel
AT zhuzhonglin thedegreeofperiimplantosteolysisinducedbypeekcocrmoandhxlpewearparticlesastudybasedonaporousti6al4vimplantinarabbitmodel
AT wangyou thedegreeofperiimplantosteolysisinducedbypeekcocrmoandhxlpewearparticlesastudybasedonaporousti6al4vimplantinarabbitmodel
AT duzhe degreeofperiimplantosteolysisinducedbypeekcocrmoandhxlpewearparticlesastudybasedonaporousti6al4vimplantinarabbitmodel
AT zhuzhonglin degreeofperiimplantosteolysisinducedbypeekcocrmoandhxlpewearparticlesastudybasedonaporousti6al4vimplantinarabbitmodel
AT wangyou degreeofperiimplantosteolysisinducedbypeekcocrmoandhxlpewearparticlesastudybasedonaporousti6al4vimplantinarabbitmodel