Cargando…
Extraction of the Anisotropic Plasticity of Metal Materials by Using Inverse Analysis and Dual Indentation Tests
In this paper, a novel inverse computation approach is proposed to extract the anisotropic plasticity parameters of metal materials by using inverse analysis and dual indentation tests. Based on dimensional analysis and extensive finite element (FE) simulations, four independent dimensionless functi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793510/ https://www.ncbi.nlm.nih.gov/pubmed/29271944 http://dx.doi.org/10.3390/ma11010012 |
_version_ | 1783296968721694720 |
---|---|
author | Wang, Mingzhi Wu, Jianjun Fan, He Zhang, Zengkun Wu, Hongfei |
author_facet | Wang, Mingzhi Wu, Jianjun Fan, He Zhang, Zengkun Wu, Hongfei |
author_sort | Wang, Mingzhi |
collection | PubMed |
description | In this paper, a novel inverse computation approach is proposed to extract the anisotropic plasticity parameters of metal materials by using inverse analysis and dual indentation tests. Based on dimensional analysis and extensive finite element (FE) simulations, four independent dimensionless functions are derived to correlate the anisotropic plasticity parameters with material responses in dual indentation tests. Besides, an inverse calculation algorithm is suggested, to estimate the unknown anisotropic parameters of the indented specimens using the information collected from indentation. The proposed numerical approach is applied on a series of engineering materials. Results show that the inverse analysis is ill-posed when only the load-displacement (P-h) curves in dual indentation tests were used. This problem can be effectively alleviated by introducing the pile-up effect as the additional information. The new method is proved to be very effective and reliable. |
format | Online Article Text |
id | pubmed-5793510 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-57935102018-02-07 Extraction of the Anisotropic Plasticity of Metal Materials by Using Inverse Analysis and Dual Indentation Tests Wang, Mingzhi Wu, Jianjun Fan, He Zhang, Zengkun Wu, Hongfei Materials (Basel) Article In this paper, a novel inverse computation approach is proposed to extract the anisotropic plasticity parameters of metal materials by using inverse analysis and dual indentation tests. Based on dimensional analysis and extensive finite element (FE) simulations, four independent dimensionless functions are derived to correlate the anisotropic plasticity parameters with material responses in dual indentation tests. Besides, an inverse calculation algorithm is suggested, to estimate the unknown anisotropic parameters of the indented specimens using the information collected from indentation. The proposed numerical approach is applied on a series of engineering materials. Results show that the inverse analysis is ill-posed when only the load-displacement (P-h) curves in dual indentation tests were used. This problem can be effectively alleviated by introducing the pile-up effect as the additional information. The new method is proved to be very effective and reliable. MDPI 2017-12-22 /pmc/articles/PMC5793510/ /pubmed/29271944 http://dx.doi.org/10.3390/ma11010012 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Mingzhi Wu, Jianjun Fan, He Zhang, Zengkun Wu, Hongfei Extraction of the Anisotropic Plasticity of Metal Materials by Using Inverse Analysis and Dual Indentation Tests |
title | Extraction of the Anisotropic Plasticity of Metal Materials by Using Inverse Analysis and Dual Indentation Tests |
title_full | Extraction of the Anisotropic Plasticity of Metal Materials by Using Inverse Analysis and Dual Indentation Tests |
title_fullStr | Extraction of the Anisotropic Plasticity of Metal Materials by Using Inverse Analysis and Dual Indentation Tests |
title_full_unstemmed | Extraction of the Anisotropic Plasticity of Metal Materials by Using Inverse Analysis and Dual Indentation Tests |
title_short | Extraction of the Anisotropic Plasticity of Metal Materials by Using Inverse Analysis and Dual Indentation Tests |
title_sort | extraction of the anisotropic plasticity of metal materials by using inverse analysis and dual indentation tests |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793510/ https://www.ncbi.nlm.nih.gov/pubmed/29271944 http://dx.doi.org/10.3390/ma11010012 |
work_keys_str_mv | AT wangmingzhi extractionoftheanisotropicplasticityofmetalmaterialsbyusinginverseanalysisanddualindentationtests AT wujianjun extractionoftheanisotropicplasticityofmetalmaterialsbyusinginverseanalysisanddualindentationtests AT fanhe extractionoftheanisotropicplasticityofmetalmaterialsbyusinginverseanalysisanddualindentationtests AT zhangzengkun extractionoftheanisotropicplasticityofmetalmaterialsbyusinginverseanalysisanddualindentationtests AT wuhongfei extractionoftheanisotropicplasticityofmetalmaterialsbyusinginverseanalysisanddualindentationtests |