Cargando…
Novel Magnesium Elektron21-AlN Nanocomposites Produced by Ultrasound-Assisted Casting; Microstructure, Thermal and Electrical Conductivity
In the current work, a novel magnesium alloy Elektron21 reinforced by ceramic AlN nanoparticles were produced by an ultrasound-assisted casting. The fabricated nanocomposites were investigated to evaluate their microstructure, hardness, physical, thermal and electrical conductivity. The microstructu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793525/ https://www.ncbi.nlm.nih.gov/pubmed/29278355 http://dx.doi.org/10.3390/ma11010027 |
Sumario: | In the current work, a novel magnesium alloy Elektron21 reinforced by ceramic AlN nanoparticles were produced by an ultrasound-assisted casting. The fabricated nanocomposites were investigated to evaluate their microstructure, hardness, physical, thermal and electrical conductivity. The microstructural evolutions show that a uniform dispersion of the ceramic particles within the matrix can be achieved by employing the ultrasound-assisted stirring. However, some nanoparticles were found to be pushed by the solidification front. According to the Vickers hardness results, the addition of AlN nanoparticles results in a slight improvement of the mechanical properties of the nanocomposites. What is surprising is that both electrical and thermal conductivity of the nanocomposite were improved significantly as a consequence of AlN addition. This improvement in the conductivity characteristics of the nanocomposite is mainly corresponding to the structural effect of nanoparticles within the matrix. |
---|