Cargando…
Robust reduced-rank regression
In high-dimensional multivariate regression problems, enforcing low rank in the coefficient matrix offers effective dimension reduction, which greatly facilitates parameter estimation and model interpretation. However, commonly used reduced-rank methods are sensitive to data corruption, as the low-r...
Autores principales: | She, Y., Chen, K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793675/ https://www.ncbi.nlm.nih.gov/pubmed/29430036 http://dx.doi.org/10.1093/biomet/asx032 |
Ejemplares similares
-
Multivariate reduced-rank regression: theory and applications
por: Reinsel, Gregory C, et al.
Publicado: (1998) -
Sparse reduced-rank regression for integrating omics data
por: Hilafu, Haileab, et al.
Publicado: (2020) -
Reduced rank regression: with applications to quantitative structure-activity relationships
por: Schmidli, Heinz
Publicado: (1995) -
Rank regression: an alternative regression approach for data with outliers
por: CHEN, Tian, et al.
Publicado: (2014) -
Robust rankings: Review of multivariate assessments illustrated by the Shanghai rankings
por: Freyer, Leo
Publicado: (2014)