Cargando…
Principal weighted support vector machines for sufficient dimension reduction in binary classification
Sufficient dimension reduction is popular for reducing data dimensionality without stringent model assumptions. However, most existing methods may work poorly for binary classification. For example, sliced inverse regression (Li, 1991) can estimate at most one direction if the response is binary. In...
Autores principales: | Shin, Seung Jun, Wu, Yichao, Zhang, Hao Helen, Liu, Yufeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793677/ https://www.ncbi.nlm.nih.gov/pubmed/29430027 http://dx.doi.org/10.1093/biomet/asw057 |
Ejemplares similares
-
Binary Classification of Aqueous Solubility Using Support Vector Machines with Reduction and Recombination Feature Selection
por: Cheng, Tiejun, et al.
Publicado: (2011) -
Sufficient dimension reduction: methods and applications with r
por: Li, Bing
Publicado: (2018) -
Sufficient Dimension Reduction: An Information-Theoretic Viewpoint
por: Ghosh, Debashis
Publicado: (2022) -
Principal Manifolds for Data Visualization and Dimension Reduction
por: Gorban, A N, et al.
Publicado: (2007) -
Multiclass Cancer Classification by Using Fuzzy Support Vector Machine and Binary Decision Tree With Gene Selection
por: Mao, Yong, et al.
Publicado: (2005)