Cargando…
Identification and estimation of causal effects with outcomes truncated by death
It is common in medical studies that the outcome of interest is truncated by death, meaning that a subject has died before the outcome could be measured. In this case, restricted analysis among survivors may be subject to selection bias. Hence, it is of interest to estimate the survivor average caus...
Autores principales: | Wang, Linbo, Zhou, Xiao-Hua, Richardson, Thomas S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793679/ https://www.ncbi.nlm.nih.gov/pubmed/29430035 http://dx.doi.org/10.1093/biomet/asx034 |
Ejemplares similares
-
A Bayesian Approach for Estimating the Survivor Average Causal Effect When Outcomes Are Truncated by Death in Cluster-Randomized Trials
por: Tong, Guangyu, et al.
Publicado: (2023) -
Identification and estimation of survivor average causal effects
por: Tchetgen, Eric J Tchetgen
Publicado: (2014) -
Methods for handling longitudinal outcome processes truncated by dropout and death
por: Wen, Lan, et al.
Publicado: (2018) -
Discovering graphical Granger causality using the truncating lasso penalty
por: Shojaie, Ali, et al.
Publicado: (2010) -
Caution About Truncation-By-Death in Clinical Trial Statistical Analysis: A Lesson from Remdesivir
por: Deng, Yuhao, et al.
Publicado: (2021)