Cargando…
On inverse probability-weighted estimators in the presence of interference
We consider inference about the causal effect of a treatment or exposure in the presence of interference, i.e., when one individual’s treatment affects the outcome of another individual. In the observational setting where the treatment assignment mechanism is not known, inverse probability-weighted...
Autores principales: | Liu, L., Hudgens, M. G., Becker-Dreps, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793685/ https://www.ncbi.nlm.nih.gov/pubmed/29422692 http://dx.doi.org/10.1093/biomet/asw047 |
Ejemplares similares
-
Model misspecification and bias for inverse probability weighting estimators of average causal effects
por: Waernbaum, Ingeborg, et al.
Publicado: (2022) -
The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes
por: Austin, Peter C, et al.
Publicado: (2015) -
Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis
por: Austin, Peter C.
Publicado: (2016) -
Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models
por: Yiu, Sean, et al.
Publicado: (2020) -
Combining Multiple Imputation and Inverse-Probability
Weighting
por: Seaman, Shaun R, et al.
Publicado: (2012)