Cargando…
Multiple robustness in factorized likelihood models
We consider inference under a nonparametric or semiparametric model with likelihood that factorizes as the product of two or more variation-independent factors. We are interested in a finite-dimensional parameter that depends on only one of the likelihood factors and whose estimation requires the au...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793686/ https://www.ncbi.nlm.nih.gov/pubmed/29430033 http://dx.doi.org/10.1093/biomet/asx027 |
_version_ | 1783297008796172288 |
---|---|
author | Molina, J. Rotnitzky, A. Sued, M. Robins, J. M. |
author_facet | Molina, J. Rotnitzky, A. Sued, M. Robins, J. M. |
author_sort | Molina, J. |
collection | PubMed |
description | We consider inference under a nonparametric or semiparametric model with likelihood that factorizes as the product of two or more variation-independent factors. We are interested in a finite-dimensional parameter that depends on only one of the likelihood factors and whose estimation requires the auxiliary estimation of one or several nuisance functions. We investigate general structures conducive to the construction of so-called multiply robust estimating functions, whose computation requires postulating several dimension-reducing models but which have mean zero at the true parameter value provided one of these models is correct. |
format | Online Article Text |
id | pubmed-5793686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-57936862018-09-01 Multiple robustness in factorized likelihood models Molina, J. Rotnitzky, A. Sued, M. Robins, J. M. Biometrika Articles We consider inference under a nonparametric or semiparametric model with likelihood that factorizes as the product of two or more variation-independent factors. We are interested in a finite-dimensional parameter that depends on only one of the likelihood factors and whose estimation requires the auxiliary estimation of one or several nuisance functions. We investigate general structures conducive to the construction of so-called multiply robust estimating functions, whose computation requires postulating several dimension-reducing models but which have mean zero at the true parameter value provided one of these models is correct. Oxford University Press 2017-09 2017-06-15 /pmc/articles/PMC5793686/ /pubmed/29430033 http://dx.doi.org/10.1093/biomet/asx027 Text en © 2017 Biometrika Trust |
spellingShingle | Articles Molina, J. Rotnitzky, A. Sued, M. Robins, J. M. Multiple robustness in factorized likelihood models |
title | Multiple robustness in factorized likelihood models |
title_full | Multiple robustness in factorized likelihood models |
title_fullStr | Multiple robustness in factorized likelihood models |
title_full_unstemmed | Multiple robustness in factorized likelihood models |
title_short | Multiple robustness in factorized likelihood models |
title_sort | multiple robustness in factorized likelihood models |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793686/ https://www.ncbi.nlm.nih.gov/pubmed/29430033 http://dx.doi.org/10.1093/biomet/asx027 |
work_keys_str_mv | AT molinaj multiplerobustnessinfactorizedlikelihoodmodels AT rotnitzkya multiplerobustnessinfactorizedlikelihoodmodels AT suedm multiplerobustnessinfactorizedlikelihoodmodels AT robinsjm multiplerobustnessinfactorizedlikelihoodmodels |