Cargando…
Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth
Coxiella burnetii is an obligate intracellular bacterial pathogen and a causative agent of culture-negative endocarditis. While C. burnetii initially infects alveolar macrophages, it has also been found in lipid droplet (LD)-containing foamy macrophages in the cardiac valves of endocarditis patients...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794150/ https://www.ncbi.nlm.nih.gov/pubmed/29390006 http://dx.doi.org/10.1371/journal.pone.0192215 |
_version_ | 1783297072044179456 |
---|---|
author | Mulye, Minal Zapata, Brianne Gilk, Stacey D. |
author_facet | Mulye, Minal Zapata, Brianne Gilk, Stacey D. |
author_sort | Mulye, Minal |
collection | PubMed |
description | Coxiella burnetii is an obligate intracellular bacterial pathogen and a causative agent of culture-negative endocarditis. While C. burnetii initially infects alveolar macrophages, it has also been found in lipid droplet (LD)-containing foamy macrophages in the cardiac valves of endocarditis patients. In addition, transcriptional studies of C. burnetii-infected macrophages reported differential regulation of the LD coat protein-encoding gene perilipin 2 (plin-2). To further investigate the relationship between LDs and C. burnetii, we compared LD numbers using fluorescence microscopy in mock-infected and C. burnetii-infected alveolar macrophages. On average, C. burnetii-infected macrophages contained twice as many LDs as mock-infected macrophages. LD numbers increased as early as 24 hours post-infection, an effect reversed by blocking C. burnetii protein synthesis. The observed LD accumulation was dependent on the C. burnetii Type 4B Secretion System (T4BSS), a major virulence factor that manipulates host cellular processes by secreting bacterial effector proteins into the host cell cytoplasm. To determine the importance of LDs during C. burnetii infection, we manipulated LD homeostasis and assessed C. burnetii intracellular growth. Surprisingly, blocking LD formation with the pharmacological inhibitors triacsin C or T863, or knocking out acyl-CoA transferase-1 (acat-1) in alveolar macrophages, increased C. burnetii growth at least 2-fold. Conversely, preventing LD lipolysis by inhibiting adipose triglyceride lipase (ATGL) with atglistatin almost completely blocked bacterial growth, suggesting LD breakdown is essential for C. burnetii. Together these data suggest that maintenance of LD homeostasis, possibly via the C. burnetii T4BSS, is critical for bacterial growth. |
format | Online Article Text |
id | pubmed-5794150 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57941502018-02-16 Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth Mulye, Minal Zapata, Brianne Gilk, Stacey D. PLoS One Research Article Coxiella burnetii is an obligate intracellular bacterial pathogen and a causative agent of culture-negative endocarditis. While C. burnetii initially infects alveolar macrophages, it has also been found in lipid droplet (LD)-containing foamy macrophages in the cardiac valves of endocarditis patients. In addition, transcriptional studies of C. burnetii-infected macrophages reported differential regulation of the LD coat protein-encoding gene perilipin 2 (plin-2). To further investigate the relationship between LDs and C. burnetii, we compared LD numbers using fluorescence microscopy in mock-infected and C. burnetii-infected alveolar macrophages. On average, C. burnetii-infected macrophages contained twice as many LDs as mock-infected macrophages. LD numbers increased as early as 24 hours post-infection, an effect reversed by blocking C. burnetii protein synthesis. The observed LD accumulation was dependent on the C. burnetii Type 4B Secretion System (T4BSS), a major virulence factor that manipulates host cellular processes by secreting bacterial effector proteins into the host cell cytoplasm. To determine the importance of LDs during C. burnetii infection, we manipulated LD homeostasis and assessed C. burnetii intracellular growth. Surprisingly, blocking LD formation with the pharmacological inhibitors triacsin C or T863, or knocking out acyl-CoA transferase-1 (acat-1) in alveolar macrophages, increased C. burnetii growth at least 2-fold. Conversely, preventing LD lipolysis by inhibiting adipose triglyceride lipase (ATGL) with atglistatin almost completely blocked bacterial growth, suggesting LD breakdown is essential for C. burnetii. Together these data suggest that maintenance of LD homeostasis, possibly via the C. burnetii T4BSS, is critical for bacterial growth. Public Library of Science 2018-02-01 /pmc/articles/PMC5794150/ /pubmed/29390006 http://dx.doi.org/10.1371/journal.pone.0192215 Text en © 2018 Mulye et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Mulye, Minal Zapata, Brianne Gilk, Stacey D. Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth |
title | Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth |
title_full | Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth |
title_fullStr | Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth |
title_full_unstemmed | Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth |
title_short | Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth |
title_sort | altering lipid droplet homeostasis affects coxiella burnetii intracellular growth |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794150/ https://www.ncbi.nlm.nih.gov/pubmed/29390006 http://dx.doi.org/10.1371/journal.pone.0192215 |
work_keys_str_mv | AT mulyeminal alteringlipiddroplethomeostasisaffectscoxiellaburnetiiintracellulargrowth AT zapatabrianne alteringlipiddroplethomeostasisaffectscoxiellaburnetiiintracellulargrowth AT gilkstaceyd alteringlipiddroplethomeostasisaffectscoxiellaburnetiiintracellulargrowth |