Cargando…
A Systematic Machine Learning Based Approach for the Diagnosis of Non-Alcoholic Fatty Liver Disease Risk and Progression
Prevention and diagnosis of NAFLD is an ongoing area of interest in the healthcare community. Screening is complicated by the fact that the accuracy of noninvasive testing lacks specificity and sensitivity to make and stage the diagnosis. Currently no non-invasive ATP III criteria based prediction m...
Autores principales: | Perveen, Sajida, Shahbaz, Muhammad, Keshavjee, Karim, Guergachi, Aziz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794753/ https://www.ncbi.nlm.nih.gov/pubmed/29391513 http://dx.doi.org/10.1038/s41598-018-20166-x |
Ejemplares similares
-
Prognostic Modeling and Prevention of Diabetes Using Machine Learning Technique
por: Perveen, Sajida, et al.
Publicado: (2019) -
A Hybrid Approach for Modeling Type 2 Diabetes Mellitus Progression
por: Perveen, Sajida, et al.
Publicado: (2020) -
Artificial intelligence with temporal features outperforms machine learning in predicting diabetes
por: Naveed, Iqra, et al.
Publicado: (2023) -
Predictive models for diabetes mellitus using machine learning techniques
por: Lai, Hang, et al.
Publicado: (2019) -
Comparison of Empirical Mode Decomposition, Wavelets, and Different Machine Learning Approaches for Patient-Specific Seizure Detection Using Signal-Derived Empirical Dictionary Approach
por: Kaleem, Muhammad, et al.
Publicado: (2021)