Cargando…

Double MgO-based Perpendicular Magnetic-Tunnel-Junction Spin-valve Structure with a Top Co(2)Fe(6)B(2) Free Layer using a Single SyAF [Co/Pt](n) Layer

A new perpendicular spin-transfer-torque magnetic-tunnel-junction (p-MTJ) spin-valve was developed to achieve a high tunneling magnetoresistance (TMR) ratio. It had a double MgO-based spin-valve structure with a top Co(2)Fe(6)B(2) free layer and incorporated a single SyAF [Co(0.4 nm)/Pt(0.3 nm)](3)...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Jin-Young, Lee, Dong-gi, Baek, Jong-Ung, Park, Jea-Gun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794754/
https://www.ncbi.nlm.nih.gov/pubmed/29391577
http://dx.doi.org/10.1038/s41598-018-20626-4
Descripción
Sumario:A new perpendicular spin-transfer-torque magnetic-tunnel-junction (p-MTJ) spin-valve was developed to achieve a high tunneling magnetoresistance (TMR) ratio. It had a double MgO-based spin-valve structure with a top Co(2)Fe(6)B(2) free layer and incorporated a single SyAF [Co(0.4 nm)/Pt(0.3 nm)](3) layer and a new buffer layer of Co(0.6)/Pt(0.3)/Co(0.4). It had a TMR ratio of 180% and anisotropy exchange field (H(ex)) of 3.44 kOe after ex-situ annealing of 350 °C for 30 min under a vacuum below 10(−6) torr and a perpendicular magnetic field of 3 tesla, thereby ensuring a memory margin and avoiding read disturbance failures. Its high level of performance was due to the face-center-cubic crystallinity of the MgO tunneling barrier being significantly improved by decreasing its surface roughness (i.e., peak-to-valley length of 1.4 nm).