Cargando…

Adipocyte-specific expression of C-type natriuretic peptide suppresses lipid metabolism and adipocyte hypertrophy in adipose tissues in mice fed high-fat diet

C-type natriuretic peptide (CNP) is expressed in diverse tissues, including adipose and endothelium, and exerts its effects by binding to and activating its receptor, guanylyl cyclase B. Natriuretic peptides regulate intracellular cGMP and phosphorylated vasodilator-stimulated phosphoprotein (VASP)....

Descripción completa

Detalles Bibliográficos
Autores principales: Bae, Cho-Rong, Hino, Jun, Hosoda, Hiroshi, Son, Cheol, Makino, Hisashi, Tokudome, Takeshi, Tomita, Tsutomu, Hosoda, Kiminori, Miyazato, Mikiya, Kangawa, Kenji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794866/
https://www.ncbi.nlm.nih.gov/pubmed/29391544
http://dx.doi.org/10.1038/s41598-018-20469-z
Descripción
Sumario:C-type natriuretic peptide (CNP) is expressed in diverse tissues, including adipose and endothelium, and exerts its effects by binding to and activating its receptor, guanylyl cyclase B. Natriuretic peptides regulate intracellular cGMP and phosphorylated vasodilator-stimulated phosphoprotein (VASP). We recently revealed that overexpression of CNP in endothelial cells protects against high-fat diet (HFD)-induced obesity in mice. Given that endothelial CNP affects adipose tissue during obesity, CNP in adipocytes might directly regulate adipocyte function during obesity. Therefore, to elucidate the effect of CNP in adipocytes, we assessed 3T3-L1 adipocytes and transgenic (Tg) mice that overexpressed CNP specifically in adipocytes (A-CNP). We found that CNP activates the cGMP–VASP pathway in 3T3-L1 adipocytes. Compared with Wt mice, A-CNP Tg mice showed decreases in fat weight and adipocyte hypertrophy and increases in fatty acid β-oxidation, lipolysis-related gene expression, and energy expenditure during HFD-induced obesity. These effects led to decreased levels of the macrophage marker F4/80 in the mesenteric fat pad and reduced inflammation. Furthermore, A-CNP Tg mice showed improved glucose tolerance and insulin sensitivity, which were associated with enhanced insulin-stimulated Akt phosphorylation. Our results suggest that CNP overexpression in adipocytes protects against adipocyte hypertrophy, excess lipid metabolism, inflammation, and decreased insulin sensitivity during HFD-induced obesity.