Cargando…
Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures
For advanced materials characterization, a novel and extremely effective approach of pattern recognition in optical microscopic images of steels is demonstrated. It is based on fast Random Forest statistical algorithm of machine learning for reliable and automated segmentation of typical steel micro...
Autores principales: | Bulgarevich, Dmitry S., Tsukamoto, Susumu, Kasuya, Tadashi, Demura, Masahiko, Watanabe, Makoto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794901/ https://www.ncbi.nlm.nih.gov/pubmed/29391483 http://dx.doi.org/10.1038/s41598-018-20438-6 |
Ejemplares similares
-
Automatic steel labeling on certain microstructural constituents with image processing and machine learning tools
por: Bulgarevich, Dmitry S., et al.
Publicado: (2019) -
Machine learning for pattern and waveform recognitions in terahertz image data
por: Bulgarevich, Dmitry S., et al.
Publicado: (2021) -
Crystal plasticity simulations with representative volume element of as-build laser powder bed fusion materials
por: Bulgarevich, Dmitry S., et al.
Publicado: (2023) -
Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern recognition
por: Kim, Hoheok, et al.
Publicado: (2020) -
Author Correction: Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern recognition
por: Kim, Hoheok, et al.
Publicado: (2021)