Cargando…

Potential benefits of mesenchymal stem cells and electroacupuncture on the trophic factors associated with neurogenesis in mice with ischemic stroke

The beneficial effects of mesenchymal stem cells (MSCs) and electroacupuncture (EA) on neurogenesis and related trophic factors remain unclear. Bone marrow MSCs (mBMSC) were transplanted into the striatum of mice with middle cerebral artery occlusion (MCAO), and EA stimulation was applied at two acu...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Yu Ri, Ahn, Sung Min, Pak, Malk Eun, Lee, Hong Ju, Jung, Da Hee, Shin, Yong-Il, Shin, Hwa Kyoung, Choi, Byung Tae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794924/
https://www.ncbi.nlm.nih.gov/pubmed/29391466
http://dx.doi.org/10.1038/s41598-018-20481-3
Descripción
Sumario:The beneficial effects of mesenchymal stem cells (MSCs) and electroacupuncture (EA) on neurogenesis and related trophic factors remain unclear. Bone marrow MSCs (mBMSC) were transplanted into the striatum of mice with middle cerebral artery occlusion (MCAO), and EA stimulation was applied at two acupoints, Baihui and Dazhui. EA treatment significantly improved motor function, and a synergistic effect of combined mBMSC and EA treatment was observed. Combined mBMSC and EA treatment reduced prominent atrophic changes in the striatum and led to proliferation of neural progenitor cells in the subventricular zone (SVZ) and the surrounding areas of the striatum (SVZ + striatum) of MCAO mice. The mBMSC and EA treatment markedly enhanced mature brain-derived neurotrophic factor (mBDNF) expression in the SVZ + striatum and hippocampus of mice with MCAO, and combined treatment enhanced neurotrophin-4 (NT4) expression. The number of mBDNF- and NT4-positive neurons in the SVZ + striatum and hippocampus increased following EA treatment. Combined treatment led to an increase in the expression levels of phosphorylated cAMP response element binding protein in the neuroblasts of the striatum. Our results indicate that combined MSC and EA treatment may lead to a better therapeutic effect via co-regulation of neurotrophic factors in the brain, by regulating neurogenesis more than single therapy.