Cargando…
Predicting phase behavior of grain boundaries with evolutionary search and machine learning
The study of grain boundary phase transitions is an emerging field until recently dominated by experiments. The major bottleneck in the exploration of this phenomenon with atomistic modeling has been the lack of a robust computational tool that can predict interface structure. Here we develop a comp...
Autores principales: | Zhu, Qiang, Samanta, Amit, Li, Bingxi, Rudd, Robert E., Frolov, Timofey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794988/ https://www.ncbi.nlm.nih.gov/pubmed/29391453 http://dx.doi.org/10.1038/s41467-018-02937-2 |
Ejemplares similares
-
Observations of grain boundary phase transformations in an elemental metal
por: Meiners, Thorsten, et al.
Publicado: (2020) -
Dual phase patterning during a congruent grain boundary phase transition in elemental copper
por: Langenohl, Lena, et al.
Publicado: (2022) -
Author Correction: Dual phase patterning during a congruent grain boundary phase transition in elemental copper
por: Langenohl, Lena, et al.
Publicado: (2023) -
Graph Neural Network
Guided Evolutionary Search of
Grain Boundaries in 2D Materials
por: Zhang, Jianan, et al.
Publicado: (2023) -
Atomistic and machine learning studies of solute segregation in metastable grain boundaries
por: Mahmood, Yasir, et al.
Publicado: (2022)