Cargando…
Hierarchical Discriminant Analysis
The Internet of Things (IoT) generates lots of high-dimensional sensor intelligent data. The processing of high-dimensional data (e.g., data visualization and data classification) is very difficult, so it requires excellent subspace learning algorithms to learn a latent subspace to preserve the intr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795365/ https://www.ncbi.nlm.nih.gov/pubmed/29346319 http://dx.doi.org/10.3390/s18010279 |
Sumario: | The Internet of Things (IoT) generates lots of high-dimensional sensor intelligent data. The processing of high-dimensional data (e.g., data visualization and data classification) is very difficult, so it requires excellent subspace learning algorithms to learn a latent subspace to preserve the intrinsic structure of the high-dimensional data, and abandon the least useful information in the subsequent processing. In this context, many subspace learning algorithms have been presented. However, in the process of transforming the high-dimensional data into the low-dimensional space, the huge difference between the sum of inter-class distance and the sum of intra-class distance for distinct data may cause a bias problem. That means that the impact of intra-class distance is overwhelmed. To address this problem, we propose a novel algorithm called Hierarchical Discriminant Analysis (HDA). It minimizes the sum of intra-class distance first, and then maximizes the sum of inter-class distance. This proposed method balances the bias from the inter-class and that from the intra-class to achieve better performance. Extensive experiments are conducted on several benchmark face datasets. The results reveal that HDA obtains better performance than other dimensionality reduction algorithms. |
---|