Cargando…
Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements †
Nowadays, there is a strong demand for inspection systems integrating both high sensitivity under various testing conditions and advanced processing allowing automatic identification of the examined object state and detection of threats. This paper presents the possibility of utilization of a magnet...
Autor principal: | Psuj, Grzegorz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795376/ https://www.ncbi.nlm.nih.gov/pubmed/29351215 http://dx.doi.org/10.3390/s18010292 |
Ejemplares similares
-
Utilization of Multisensor Data Fusion for Magnetic Nondestructive Evaluation of Defects in Steel Elements under Various Operation Strategies
por: Psuj, Grzegorz
Publicado: (2018) -
Identification of Grain Oriented SiFe Steels Based on Imaging the Instantaneous Dynamics of Magnetic Barkhausen Noise Using Short-Time Fourier Transform and Deep Convolutional Neural Network
por: Maciusowicz, Michal, et al.
Publicado: (2021) -
Use of Time-Frequency Representation of Magnetic Barkhausen Noise for Evaluation of Easy Magnetization Axis of Grain-Oriented Steel
por: Maciusowicz, Michal, et al.
Publicado: (2020) -
Use of Time-Dependent Multispectral Representation of Magnetic Barkhausen Noise Signals for the Needs of Non-Destructive Evaluation of Steel Materials
por: Maciusowicz, Michal, et al.
Publicado: (2019) -
Time-Frequency Analysis of Barkhausen Noise for the Needs of Anisotropy Evaluation of Grain-Oriented Steels
por: Maciusowicz, Michal, et al.
Publicado: (2020)