Cargando…
Characterization of System Status Signals for Multivariate Time Series Discretization Based on Frequency and Amplitude Variation
Many fault detection methods have been proposed for monitoring the health of various industrial systems. Characterizing the monitored signals is a prerequisite for selecting an appropriate detection method. However, fault detection methods tend to be decided with user’s subjective knowledge or their...
Autores principales: | Baek, Woonsang, Baek, Sujeong, Kim, Duck Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795535/ https://www.ncbi.nlm.nih.gov/pubmed/29316731 http://dx.doi.org/10.3390/s18010154 |
Ejemplares similares
-
An in-Process Inspection System to Detect Noise Originating from within the Interior Trim Panels of Car Doors
por: Baek, Woonsang, et al.
Publicado: (2020) -
Estimating System State through Similarity Analysis of Signal Patterns
por: Namgung, Kichang, et al.
Publicado: (2020) -
Estimation in discrete time coarsened multivariate longitudinal
models
por: Westerberg, Marcus
Publicado: (2023) -
Discrete multivariate analysis: theory and practice
por: Bishop, Yvonne M M, et al.
Publicado: (1975) -
Assessment of Multivariate Neural Time Series by Phase Synchrony Clustering in a Time-Frequency-Topography Representation
por: Porta-Garcia, M. A., et al.
Publicado: (2018)